Examples with solutions for Multiplication of Powers: Variables in the exponent of the power

Exercise #1

3x2x32x= 3^x\cdot2^x\cdot3^{2x}=

Video Solution

Step-by-Step Solution

In this case we have 2 different bases, so we will add what can be added, that is, the exponents of 3 3

3x2x32x=2x33x 3^x\cdot2^x\cdot3^{2x}=2^x\cdot3^{3x}

Answer

33x2x 3^{3x}\cdot2^x

Exercise #2

22x+12523x= 2^{2x+1}\cdot2^5\cdot2^{3x}=

Video Solution

Step-by-Step Solution

Since the bases are the same, the exponents can be added:

2x+1+5+3x=5x+6 2x+1+5+3x=5x+6

Answer

25x+6 2^{5x+6}

Exercise #3

42y454y46= 4^{2y}\cdot4^{-5}\cdot4^{-y}\cdot4^6=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We apply the property for this problem:

42y454y46=42y+(5)+(y)+6=42y5y+6 4^{2y}\cdot4^{-5}\cdot4^{-y}\cdot4^6= 4^{2y+(-5)+(-y)+6}=4^{2y-5-y+6} We simplify the expression we got in the last step:

42y5y+6=4y+1 4^{2y-5-y+6} =4^{y+1} When we add similar terms in the exponent.

Therefore, the correct answer is option c.

Answer

4y+1 4^{y+1}

Exercise #4

72x+1717x= 7^{2x+1}\cdot7^{-1}\cdot7^x=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We apply the property to our expression:

72x+1717x=72x+1+(1)+x=72x+11+x 7^{2x+1}\cdot7^{-1}\cdot7^x=7^{2x+1+(-1)+x}=7^{2x+1-1+x} We simplify the expression we got in the last step:

72x+11+x=73x 7^{2x+1-1+x}=7^{3x} When we add similar terms in the exponent.

Therefore, the correct answer is option d.

Answer

73x 7^{3x}

Exercise #5

Reduce the following equation:

10a+b×10a+1×10b+1= 10^{a+b}\times10^{a+1}\times10^{b+1}=

Video Solution

Answer

102b+2a+2 10^{2b+2a+2}

Exercise #6

Reduce the following equation:

2a×22= 2^a\times2^2=

Video Solution

Answer

2a+2 2^{a+2}

Exercise #7

Reduce the following equation:

4x×42×4a= 4^x\times4^2\times4^a=

Video Solution

Answer

4x+2+a 4^{x+2+a}

Exercise #8

Reduce the following equation:

52x×5x= 5^{2x}\times5^x=

Video Solution

Answer

52x+x 5^{2x+x}

Exercise #9

Reduce the following equation:

5a×52a×53a= 5^a\times5^{2a}\times5^{3a}=

Video Solution

Answer

5a+2a+3a 5^{a+2a+3a}

Exercise #10

Reduce the following equation:

8a×82×8x= 8^a\times8^2\times8^x=

Video Solution

Answer

8a+2+x 8^{a+2+x}

Exercise #11

4x×4x= 4^x\times4^x=

Video Solution

Answer

4x+x 4^{x+x}

Exercise #12

34×3x= 3^4\times3^x=

Video Solution

Answer

34+x 3^{4+x}

Exercise #13

52×5a×53= 5^2\times5^a\times5^3=

Video Solution

Answer

55+a 5^{5+a}

Exercise #14

7x+1×7x= 7^{x+1}\times7^x=

Video Solution

Answer

72x+1 7^{2x+1}

Exercise #15

Expand the following equation:

22a+a= 2^{2a+a}=

Video Solution

Answer

22a×2a 2^{2a}\times2^a

Exercise #16

Expand the following equation:

32a+x+a= 3^{2a+x+a}=

Video Solution

Answer

32a×3x×3a 3^{2a}\times3^x\times3^a

Exercise #17

Expand the following equation:

4a+b+c= 4^{a+b+c}=

Video Solution

Answer

4a×4b×4c 4^a\times4^b\times4^c

Exercise #18

Expand the following equation:

72x+7= 7^{2x+7}=

Video Solution

Answer

7x×7x+7 7^x\times7^{x+7}

Exercise #19

Expand the following equation:

g10a+5x= g^{10a+5x}=

Video Solution

Answer

g5a+5x×g5a g^{5a+5x}\times g^{5a}

Exercise #20

Reduce the following equation:

a3x×ab×ab= a^{-3x}\times a^b\times a^b=

Video Solution

Answer

a3x+2b a^{-3x+2b}