Examples with solutions for Multiplication of Powers: Calculating powers with negative exponents

Exercise #1

7576=? 7^5\cdot7^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the rule for multiplying exponents. (the multiplication between terms with identical bases):

aman=am+n a^m\cdot a^n=a^{m+n} We then apply it to the problem:

7576=75+(6)=756=71 7^5\cdot7^{-6}=7^{5+(-6)}=7^{5-6}=7^{-1} When in a first stage we begin by applying the aforementioned rule and then continue on to simplify the expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression obtained in the previous step:

71=171=17 7^{-1}=\frac{1}{7^1}=\frac{1}{7} We then summarise the solution to the problem: 7576=71=17 7^5\cdot7^{-6}=7^{-1}=\frac{1}{7} Therefore, the correct answer is option B.

Answer

17 \frac{1}{7}

Exercise #2

124126=? 12^4\cdot12^{-6}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of exponents; for the multiplication of terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} We apply it to the given problem:

124126=124+(6)=1246=122 12^4\cdot12^{-6}=12^{4+(-6)}=12^{4-6}=12^{-2} When in a first stage we apply the aforementioned rule and then simplify the subsequent expression in the exponent,

Next, we use the negative exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the expression that we obtained in the previous step:

122=1122=1144 12^{-2}=\frac{1}{12^2}=\frac{1}{144} Lastly we summarise the solution to the problem: 124126=122=1144 12^4\cdot12^{-6}=12^{-2} =\frac{1}{144} Therefore, the correct answer is option A.

Answer

1144 \frac{1}{144}

Exercise #3

101021041010= 10\cdot10^2\cdot10^{-4}\cdot10^{10}=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Keep in mind that this property is also valid for several terms in the multiplication and not just for two, for example for the multiplication of three terms with the same base we obtain:

amanak=am+nak=am+n+k a^m\cdot a^n\cdot a^k=a^{m+n}\cdot a^k=a^{m+n+k} When we use the mentioned power property twice, we could also perform the same calculation for four terms of the multiplication of five, etc.,

Let's return to the problem:

First keep in mind that:

10=101 10=10^1 Keep in mind that all the terms of the multiplication have the same base, so we will use the previous property:

1011021041010=101+24+10=109 10^1\cdot10^2\cdot10^{-4}\cdot10^{10}=10^{1+2-4+10}=10^9

Therefore, the correct answer is option c.

Answer

109 10^9

Exercise #4

53505255= 5^{-3}\cdot5^0\cdot5^2\cdot5^5=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} Keep in mind that this property is also valid for several terms in the multiplication and not just for two, for example for the multiplication of three terms with the same base we obtain:

amanak=am+nak=am+n+k a^m\cdot a^n\cdot a^k=a^{m+n}\cdot a^k=a^{m+n+k} When we use the mentioned power property twice, we could also perform the same calculation for four terms of the multiplication of five, etc.,

Let's return to the problem:

Keep in mind that all the terms of the multiplication have the same base, so we will use the previous property:

53505255=53+0+2+5=54 5^{-3}\cdot5^0\cdot5^2\cdot5^5=5^{-3+0+2+5}=5^4 Therefore, the correct answer is option c.

Note:

Keep in mind that 50=1 5^0=1

Answer

54 5^4

Exercise #5

E6F4E0F7E= E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=

Video Solution

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} It should be noted that this property is only valid for terms with identical bases,

We return to the problem

We notice that in the problem there are two types of terms with different bases. First, for the sake of order, we will use the substitution property of multiplication to rearrange the expression so that the two terms with the same base are grouped together. Then, we will proceed to work:

E6F4E0F7E=E6E0EF4F7 E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7 Next, we apply the power property for each type of term separately,

E6E0EF4F7=E6+0+1F4+7=E7F3 E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7=E^{6+0+1}\cdot F^{-4+7}=E^7\cdot F^3

We apply the power property separately - for the terms whose bases areE E and for the terms whose bases areF F and we add the exponents and simplify the terms with the same base.

The correct answer is then option d.

Note:

We use the fact that:

E=E1 E=E^1 .

Answer

E7F3 E^7\cdot F^3

Exercise #6

y2×y7= y^{-2}\times y^7=

Video Solution

Answer

y5 y^5

Exercise #7

9300192529549=? 9^{300}\cdot\frac{1}{9^{-252}}\cdot9^{-549}=\text{?}

Video Solution

Answer

193 \frac{1}{9^{-3}}

Exercise #8

133453=? \frac{1}{-3}\cdot3^{-4}\cdot5^3=\text{?}

Video Solution

Answer

5335 -\frac{5^3}{3^5}

Exercise #9

4580145814975=? 45^{-80}\cdot\frac{1}{45^{-81}}\cdot49\cdot7^{-5}=\text{?}

Video Solution

Answer

4573 \frac{45}{7^3}

Exercise #10

Solve the following:


y3y6×y4y2×y12y7= \frac{y^3}{y^6}\times\frac{y^4}{y^{-2}}\times\frac{y^{12}}{y^7}=

Video Solution

Answer

y8 y^8

Exercise #11

42x1442=? 4^{2x}\cdot\frac{1}{4}\cdot4^{-2}=\text{?}

Video Solution

Answer

1432x \frac{1}{4^{3-2x}}

Exercise #12

c1d6d2c3c2= c^{-1}\cdot d^6\cdot d^{-2}\cdot c^3\cdot c^2=

Video Solution

Answer

c4d4 c^4\cdot d^4