Triangle Height Problem: Express AD When Area = 4X+16 cm²

Question

The area of the triangle ABC is 4X+16 cm².

Express the length AD in terms of X.

S=4X+16S=4X+16S=4X+16X+4X+4X+4AAABBBCCCDDD

Video Solution

Solution Steps

00:00 Express AD using X
00:02 We'll use the formula for calculating the area of triangle ABC
00:06 (base(AB) multiplied by height (AC)) divided by 2
00:12 Substitute appropriate values and solve
00:20 Take out 4 from the parentheses
00:25 Simplify and multiply by 2 to isolate AB
00:32 This is the length of AB
00:38 Now let's use the Pythagorean theorem in triangle ABC
00:46 Substitute appropriate values and solve
00:55 Take the square root to find CB
01:11 This is the expression for the length of CB
01:22 Now let's use the triangle area formula again to find AD
01:25 This time we'll use height (AD) and base (CB)
01:32 Substitute appropriate values and solve
01:46 Isolate AD and continue solving
02:02 And this is the solution to the problem

Step-by-Step Solution

The area of triangle ABC is:

AB×AC2=S \frac{AB\times AC}{2}=S

Into this formula, we insert the given data:

AB×(x+4)2=4x+16 \frac{AB\times(x+4)}{2}=4x+16

AB×(x+4)2=4(x+4) \frac{AB\times(x+4)}{2}=4(x+4)

Notice that X plus 4 on both sides is reduced, and we are left with the equation:

AB2=4 \frac{AB}{2}=4

We then multiply by 2 and obtain the following:

AB=4×2=8 AB=4\times2=8

If we now observe the triangle ABC we are able to find side BC using the Pythagorean Theorem:

AB2+AC2=BC2 AB^2+AC^2=BC^2

We first insert the existing data into the formula:

82+(x+4)2=BC2 8^2+(x+4)^2=BC^2

We extract the root:

BC=64+x2+2×4×x+42=x2+8x+64+8=x2+8x+72 BC=\sqrt{64+x^2+2\times4\times x+4^2}=\sqrt{x^2+8x+64+8}=\sqrt{x^2+8x+72}

We can now calculate AD by using the formula to calculate the area of triangle ABC:

SABC=AD×BC2 S_{\text{ABC}}=\frac{AD\times BC}{2}

We then insert the data:

4x+16=AD×x2+8x+802 4x+16=\frac{AD\times\sqrt{x^2+8x+80}}{2}

AD=(4x+16)×2x2+8x+80=8x+32x2+8x+80 AD=\frac{(4x+16)\times2}{\sqrt{x^2+8x+80}}=\frac{8x+32}{\sqrt{x^2+8x+80}}

Answer

8x+32x2+8x+80 \frac{8x+32}{\sqrt{x^2+8x+80}}