Examples with solutions for Applying Combined Exponents Rules: Monomial

Exercise #1

2423= \frac{2^4}{2^3}=

Video Solution

Step-by-Step Solution

Let's keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

2423=243=21 \frac{2^4}{2^3}=2^{4-3}=2^1 Remember that any number raised to the 1st power is equal to the number itself, meaning that:

b1=b b^1=b Therefore, in the problem we obtain:

21=2 2^1=2 Therefore, the correct answer is option a.

Answer

2 2

Exercise #2

9993= \frac{9^9}{9^3}=

Video Solution

Step-by-Step Solution

Note that in the fraction and its denominator, there are terms with the same base, so we will use the law of exponents for division between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} Let's apply it to the problem:

9993=993=96 \frac{9^9}{9^3}=9^{9-3}=9^6 Therefore, the correct answer is b.

Answer

96 9^6

Exercise #3

(35)4= (3^5)^4=

Video Solution

Step-by-Step Solution

To solve the exercise we use the power property:(an)m=anm (a^n)^m=a^{n\cdot m}

We use the property with our exercise and solve:

(35)4=35×4=320 (3^5)^4=3^{5\times4}=3^{20}

Answer

320 3^{20}

Exercise #4

(62)13= (6^2)^{13}=

Video Solution

Step-by-Step Solution

We use the formula:

(an)m=an×m (a^n)^m=a^{n\times m}

Therefore, we obtain:

62×13=626 6^{2\times13}=6^{26}

Answer

626 6^{26}

Exercise #5

1120=? 112^0=\text{?}

Video Solution

Step-by-Step Solution

We use the zero exponent rule.

X0=1 X^0=1 We obtain

1120=1 112^0=1 Therefore, the correct answer is option C.

Answer

1

Exercise #6

(42)3+(g3)4= (4^2)^3+(g^3)^4=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(42)3+(g3)4=42×3+g3×4=46+g12 (4^2)^3+(g^3)^4=4^{2\times3}+g^{3\times4}=4^6+g^{12}

Answer

46+g12 4^6+g^{12}

Exercise #7

(y×x×3)5= (y\times x\times3)^5=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)n=anbn (a\times b)^n=a^nb^n

(y×x×3)5=y5x535 (y\times x\times3)^5=y^5x^53^5

Answer

y5×x5×35 y^5\times x^5\times3^5

Exercise #8

(ab8)2= (a\cdot b\cdot8)^2=

Video Solution

Step-by-Step Solution

We use the formula

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

a2b282 a^2b^28^2

Answer

a2b282 a^2\cdot b^2\cdot8^2

Exercise #9

(a×b×c×4)7= (a\times b\times c\times4)^7=

Video Solution

Step-by-Step Solution

We use the formula:

(a×b)x=axbx (a\times b)^x=a^xb^x

Therefore, we obtain:

a7b7c747 a^7b^7c^74^7

Answer

a7×b7×c7×47 a^7\times b^7\times c^7\times4^7

Exercise #10

8132= \frac{81}{3^2}=

Video Solution

Step-by-Step Solution

First, we recognize that 81 is a power of the number 3, which means that:

34=81 3^4=81 We replace in the problem:

8132=3432 \frac{81}{3^2}=\frac{3^4}{3^2} Keep in mind that the numerator and denominator of the fraction have terms with the same base, therefore we use the property of powers to divide between terms with the same base:

bmbn=bmn \frac{b^m}{b^n}=b^{m-n} We apply it in the problem:

3432=342=32 \frac{3^4}{3^2}=3^{4-2}=3^2 Therefore, the correct answer is option b.

Answer

32 3^2

Exercise #11

9380=? \frac{9\cdot3}{8^0}=\text{?}

Video Solution

Step-by-Step Solution

We use the formula:

a0=1 a^0=1

9×380=9×31=9×3 \frac{9\times3}{8^0}=\frac{9\times3}{1}=9\times3

We know that:

9=32 9=3^2

Therefore, we obtain:

32×3=32×31 3^2\times3=3^2\times3^1

We use the formula:

am×an=am+n a^m\times a^n=a^{m+n}

32×31=32+1=33 3^2\times3^1=3^{2+1}=3^3

Answer

33 3^3

Exercise #12

(14)1 (\frac{1}{4})^{-1}

Video Solution

Step-by-Step Solution

We use the power property for a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We will write the fraction in parentheses as a negative power with the help of the previously mentioned power:

14=141=41 \frac{1}{4}=\frac{1}{4^1}=4^{-1} We return to the problem, where we obtained:

(14)1=(41)1 \big(\frac{1}{4}\big)^{-1}=(4^{-1})^{-1} We continue and use the power property of an exponent raised to another exponent:

(am)n=amn (a^m)^n=a^{m\cdot n} And we apply it in the problem:

(41)1=411=41=4 (4^{-1})^{-1}=4^{-1\cdot-1}=4^1=4 Therefore, the correct answer is option d.

Answer

4 4

Exercise #13

52 5^{-2}

Video Solution

Step-by-Step Solution

We use the property of powers of a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the problem:

52=152=125 5^{-2}=\frac{1}{5^2}=\frac{1}{25}

Therefore, the correct answer is option d.

Answer

125 \frac{1}{25}

Exercise #14

[(17)1]4= [(\frac{1}{7})^{-1}]^4=

Video Solution

Step-by-Step Solution

We use the power property of a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We will rewrite the fraction in parentheses as a negative power:

17=71 \frac{1}{7}=7^{-1} Let's return to the problem, where we had:

((17)1)4=((71)1)4 \bigg( \big( \frac{1}{7}\big)^{-1}\bigg)^4=\big((7^{-1})^{-1} \big)^4 We continue and use the power property of an exponent raised to another exponent:

(am)n=amn (a^m)^n=a^{m\cdot n} And we apply it in the problem:

((71)1)4=(711)4=(71)4=714=74 \big((7^{-1})^{-1} \big)^4 =(7^{-1\cdot-1})^4=(7^1)^4=7^{1\cdot4}=7^4 Therefore, the correct answer is option c

Answer

74 7^4

Exercise #15

41=? 4^{-1}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

41=141=14 4^{-1}=\frac{1}{4^1}=\frac{1}{4} We can therefore deduce that the correct answer is option B.

Answer

14 \frac{1}{4}

Exercise #16

25=? 2^{-5}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

25=125=132 2^{-5}=\frac{1}{2^5}=\frac{1}{32} We can therefore deduce that the correct answer is option A.

Answer

132 \frac{1}{32}

Exercise #17

(7)3=? (-7)^{-3}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power property for a negative exponent:

bn=1bn b^{-n}=\frac{1}{b^n} We apply it to the problem:

(7)3=1(7)3 (-7)^{-3}=\frac{1}{(-7)^3} We then subsequently notice that each whole number inside the parentheses is raised to a negative power (that is, the number and its negative coefficient together) When using the previously mentioned power property: We are careful to take this into account,

We then continue by simplifying the expression in the denominator of the fraction, remembering the exponentiation property for the power of terms in multiplication:

(am)n=amn (a^m)^n=a^{m\cdot n} We apply the resulting expression

1(7)3=1(17)3=1(1)373=1173=173=173 \frac{1}{(-7)^3}=\frac{1}{(-1\cdot7)^3}=\frac{1}{(-1)^3\cdot7^3}=\frac{1}{-1\cdot7^3}=\frac{1}{-7^3}=-\frac{1}{7^3}

In summary we are able to deduce that the solution to the problem is as follows:

(7)3=1(7)3=173=173 (-7)^{-3}=\frac{1}{(-7)^3}=\frac{1}{-7^3}=-\frac{1}{7^3}

Therefore, the correct answer is option B.

Answer

173 -\frac{1}{7^{3}}

Exercise #18

724=? 7^{-24}=\text{?}

Video Solution

Step-by-Step Solution

Using the rules of negative exponents: how to raise a number to a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the problem:

724=1724 7^{-24}=\frac{1}{7^{24}} Therefore, the correct answer is option D.

Answer

1724 \frac{1}{7^{24}}

Exercise #19

192=? 19^{-2}=\text{?}

Video Solution

Step-by-Step Solution

In order to solve the exercise, we use the negative exponent rule.

an=1an a^{-n}=\frac{1}{a^n}

We apply the rule to the given exercise:

192=1192 19^{-2}=\frac{1}{19^2}

We can then continue and calculate the exponent.

1192=1361 \frac{1}{19^2}=\frac{1}{361}

Answer

1361 \frac{1}{361}

Exercise #20

183=? \frac{1}{8^3}=\text{?}

Video Solution

Step-by-Step Solution

We use the negative exponent rule.

bn=1bn b^{-n}=\frac{1}{b^n}

We apply it to the problem in the opposite sense.:

183=83 \frac{1}{8^3}=8^{-3}

Therefore, the correct answer is option A.

Answer

83 8^{-3}