Examples with solutions for Applying Combined Exponents Rules: Trinomial

Exercise #1

(3×4×5)4= (3\times4\times5)^4=

Video Solution

Step-by-Step Solution

We use the power law for multiplication within parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n We apply it to the problem:

(345)4=344454 (3\cdot4\cdot5)^4=3^4\cdot4^4\cdot5^4 Therefore, the correct answer is option b.

Note:

From the formula of the power property mentioned above, we understand that it refers not only to two terms of the multiplication within parentheses, but also for multiple terms within parentheses.

Answer

34×44×54 3^4\times4^4\times5^4

Exercise #2

(4×7×3)2= (4\times7\times3)^2=

Video Solution

Step-by-Step Solution

We use the power law for multiplication within parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n We apply it to the problem:

(473)2=427232 (4\cdot7\cdot3)^2=4^2\cdot7^2\cdot3^2 Therefore, the correct answer is option a.

Note:

From the formula of the power property mentioned above, we understand that we can apply it not only to the multiplication of two terms within parentheses, but is also for multiple terms within parentheses.

Answer

42×72×32 4^2\times7^2\times3^2

Exercise #3

(2×8×7)2= (2\times8\times7)^2=

Video Solution

Step-by-Step Solution

We begin by using the power rule for parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n That is, the power applied to a product inside parentheses, is applied to each of the terms within, when the parentheses are opened.

We then apply the above rule to the problem:

(287)2=228272 (2\cdot8\cdot7)^2=2^2\cdot8^2\cdot7^2 Therefore, the correct answer is option d.

Note:

From the formula of the power property inside parentheses mentioned above, it might seem as though it refers to only two terms of the product inside of the parentheses, but in reality, it is also valid for the power over a multiplication of many terms inside parentheses, as was seen above.

A good exercise is to demonstrate that if the previous property is valid for a power over a product of two terms inside parentheses (as formulated above), then it is also valid for a power over several terms of the product inside parentheses (for example - three terms, etc.).

Answer

228272 2^2\cdot8^2\cdot7^2

Exercise #4

(22)3+(33)4+(92)6= (2^2)^3+(3^3)^4+(9^2)^6=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(22)3+(33)4+(92)6=22×3+33×4+92×6=26+312+912 (2^2)^3+(3^3)^4+(9^2)^6=2^{2\times3}+3^{3\times4}+9^{2\times6}=2^6+3^{12}+9^{12}

Answer

26+312+912 2^6+3^{12}+9^{12}

Exercise #5

(9×2×5)3= (9\times2\times5)^3=

Video Solution

Step-by-Step Solution

We use the law of exponents for a power that is applied to parentheses in which terms are multiplied:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n We apply the rule to the problem:

(925)3=932353 (9\cdot2\cdot5)^3=9^3\cdot2^3\cdot5^3 When we apply the power within parentheses to the product of the terms we do so separately and maintain the multiplication,

Therefore, the correct answer is option B.

Answer

93×23×53 9^3\times2^3\times5^3

Exercise #6

((7×3)2)6+(31)3×(23)4= ((7\times3)^2)^6+(3^{-1})^3\times(2^3)^4=

Video Solution

Answer

2112+33×212 21^{12}+3^{-3}\times2^{12}

Exercise #7

(2×7×5)3= (2\times7\times5)^3=

Video Solution

Answer

23×73×53 2^3\times7^3\times5^3