Parallelogram

Parallelogram is a four-sided polygon (quadrilateral) where opposite sides are parallel and equal in length. A key feature of parallelograms is that they have two sets of parallel lines, which gives them their name. Examples of parallelograms include squares, rectangles, and rhombuses, which are all specific types of parallelograms with additional unique properties.

Characteristics of the Parallelogram

  • Sides opposite in a quadrilateral: are sides that do not have a common meeting point.
  • Adjacent sides in a quadrilateral: are sides that have a common meeting point.
  • Adjacent angles: are 2 angles that have a common vertex and side.
  • Opposite angles in the quadrilateral are angles that do not have common sides.
  • Diagonal: is a section that connects 2 non-adjacent vertices (and is not a side)

If the data is:

  • ABǁCD AB ǁ CD
  • ADǁBC AD ǁ BC

Then: ABCD ABCD is a parallelogram

Parallelogram

A1 - Parallelogram KLMN

Practice Parallelogram

Examples with solutions for Parallelogram

Exercise #1

Calculate the area of the following parallelogram:

666555

Video Solution

Step-by-Step Solution

To solve the exercise, we need to remember the formula for the area of a parallelogram:

Side * Height perpendicular to the side

We can identify that in the diagram, although it's not presented in the way we're familiar with, we are given the two essential pieces of information -

Side = 6

Height = 5

Let's substitute into the formula and calculate:

6*5=30

And that's the solution!

Answer

30 cm²

Exercise #2

Below is a quadrilateral:

Is it possible that it is a parallelogram?

AAABBBCCCDDDOOO108810

Step-by-Step Solution

According to the properties of the parallelogram: the diagonals intersect each other.

From the data in the drawing, it follows that diagonal AC and diagonal BD are divided into two equal parts, that is, the diagonals intersect each other:

AO=OC=8 AO=OC=8

DO=OB=10 DO=OB=10

Therefore, the quadrilateral is actually a parallelogram.

Answer

Yes

Exercise #3

Below is a quadrilateral:

Is it possible that it is a parallelogram?

AAABBBCCCDDD1206012060

Step-by-Step Solution

Let's review the property: a quadrilateral in which two pairs of opposite angles are equal is a parallelogram.

From the data in the drawing, it follows that:

D=B=60 D=B=60

A=C=120 A=C=120

Therefore, the quadrilateral is actually a parallelogram.

Answer

Yes

Exercise #4

Below is a quadrilateral:

Is it possible that it is a parallelogram?

AAABBBCCCDDD711811

Step-by-Step Solution

According to the properties of a parallelogram, any two opposite sides will be equal to each other.

From the data, it can be observed that only one pair of opposite sides are equal and therefore the quadrilateral is not a parallelogram.

Answer

No

Exercise #5

Calculate the area of the parallelogram according to the data in the diagram.

101010777AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

Since we know that ABCD is a parallelogram, according to the properties of parallelograms, each pair of opposite sides are equal and parallel.

Therefore CD=AB=10 CD=AB=10

We will calculate the area of the parallelogram using the formula of side multiplied by the height drawn from that side, so the area of the parallelogram is equal to:

SABCD=10×7=70cm2 S_{ABCD}=10\times7=70cm^2

Answer

70

Exercise #6

AB = DC.=

Is the shape below a parallelogram?

AAABBBCCCDDDx+582x+9x

Step-by-Step Solution

In a parallelogram, we know that each pair of opposite sides are equal to each other.

The data shows that only one pair of sides are equal to each other:

AB=DC=8 AB=DC=8

Now we try to see that the additional pair of sides are equal to each other.

We replacex=8 x=8 for each of the sides:

AD=2×8+9 AD=2\times8+9

AD=16+9 AD=16+9

AD=25 AD=25

BC=8+5 BC=8+5

BC=13 BC=13

That is, we find that the pair of opposite sides are not equal to each other:

2513 25\ne13

Therefore, the quadrilateral is not a parallelogram.

Answer

No

Exercise #7

Below is a quadrilateral:

Given B+C=180 ∢B+∢C=180

Is it possible that it is a parallelogram?

AAABBBCCCDDD4x14040140

Step-by-Step Solution

Remember that in a parallelogram each pair of opposite angles are equal to each other.

The data shows that only one pair of angles are equal to each other:

D=B=140 D=B=140

Therefore, we will now find angle C and see if it is equal to angle A, that is, if angle C is equal to 40:

Let's remember that a pair of angles on the same side are equal to 180 degrees, therefore:

B+C=180 B+C=180

We replace the existing data:

140+4x=180 140+4x=180

4x=180140 4x=180-140

4x=40 4x=40

Divide by 4:

4x4=404 \frac{4x}{4}=\frac{40}{4}

x=10 x=10

Now we replace X:

C=4×10=40 C=4\times10=40

That is, we found that angles A and C are equal to each other and that the quadrilateral is a parallelogram since each pair of opposite angles are equal to each other.

Answer

Yes

Exercise #8

Look at the parallelogram in the figure.

Its area is equal to 70 cm².

Calculate DC.

555AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

The formula for the area of a parallelogram:

Height * The side to which the height descends.

We replace in the formula all the known data, including the area:

5*DC = 70

We divide by 5:

DC = 70/5 = 14

And that's how we reveal the unknown!

Answer

14 14 cm

Exercise #9

Look at the quadrilateral below.

AO = OC

Is it a parallelogram?

AAABBBCCCDDDOOO5x+49x+110x3x-2

Step-by-Step Solution

Let's pay attention to the diagonals, remember that in a parallelogram the diagonals intersect each other.

Therefore, we will find AO, OC, BO, DO and check if they are equal and intersect each other.

We refer to the figure:

AO=OC AO=OC

9x+1=10x 9x+1=10x

We place like terms:

1=10x9x 1=10x-9x

1=x 1=x

We replace:

AO=9×1+1=10 AO=9\times1+1=10

OC=10×1=10 OC=10\times1=10

Now we know that indeedAO=OC AO=OC

Now we establish that X=1 and see if BO is equal to OD:

BO=3x2 BO=3x-2

BO=3×12= BO=3\times1-2=

BO=32=1 BO=3-2=1

OD=5x+4 OD=5x+4

OD=5×1+4 OD=5\times1+4

OD=5+4=9 OD=5+4=9

Now we find that: BOOD BO\ne OD

Since the diagonals do not intersect each other, the quadrilateral is not a parallelogram.

Answer

No

Exercise #10

ABCD is a parallelogram.

Its perimeter is 47 cm.

What is its area?

666888AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

First, let's remember that the perimeter of a parallelogram is the sum of its sides,

which is

AB+BC+CD+DA

We recall that in a parallelogram, opposite sides are equal, so
BC=AD=6

Let's substitute in the formula:

2AB+12=47

2AB=35

AB=17.5

Now, after finding the missing sides, we can continue to calculate the area.

Remember, the area of a parallelogram is side*height to the side.

17.5*8= 140

Answer

140 140 cm²

Exercise #11

Look at the parallelogram in the figure below.

Its area is equal to 40 cm².

Calculate AE.

888AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

We are told that ABCD is a parallelogram,AB=CD=8 AB=CD=8 According to the properties of a parallelogram, each pair of opposite sides are equal and parallel.

Hence to find AE we will need to use the area given to us in the formula in order to determine the area of the parallelogram:

S=DC×AE S=DC\times AE

40=8×AE 40=8\times AE

We divide both sides of the equation by 8:

8AE:8=40:8 8AE:8=40:8

AE=5 AE=5

Answer

5 5 cm

Exercise #12

ABCD parallelogram, it is known that:

BE is perpendicular to DE

BF is perpendicular to DF

BF=8 BE=4 AD=6 DC=12

Calculate the area of the parallelogram in 2 different ways

121212666444888AAABBBCCCDDDEEEFFF

Video Solution

Step-by-Step Solution

In this exercise, we are given two heights and two sides.

It is important to keep in mind: The external height can also be used to calculate the area

Therefore, we can perform the operation of the following exercise:

The height BF * the side AD

8*6

 

The height BE the side DC
4
*12

 The solution of these two exercises is 48, which is the area of the parallelogram.

 

Answer

48 cm²

Exercise #13

ABCD is a parallelogram.

CE is its height.

CB = 5
AE = 7
EB = 2

777555AAABBBCCCDDDEEE2

What is the area of the parallelogram?

Video Solution

Step-by-Step Solution

To find the area,

first, the height of the parallelogram must be found.

To conclude, let's take a look at triangle EBC.

Since we know it is a right triangle (since it is the height of the parallelogram)

the Pythagorean theorem can be used:

a2+b2=c2 a^2+b^2=c^2

In this case: EB2+EC2=BC2 EB^2+EC^2=BC^2

We place the given information: 22+EC2=52 2^2+EC^2=5^2

We isolate the variable:EC2=52+22 EC^2=5^2+2^2

We solve:EC2=254=21 EC^2=25-4=21

EC=21 EC=\sqrt{21}

Now all that remains is to calculate the area.

It is important to remember that for this, the length of each side must be used.
That is, AE+EB=2+7=9

21×9=41.24 \sqrt{21}\times9=41.24

Answer

41.24

Exercise #14

AE is the height of the parallelogram ABCD.

AB is 3 cm longer than AE.

The area of ABCD is 32 cm².

Calculate the length of side AB.

S=32S=32S=32AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

Keep in mind that AB is 3 cm greater than AE, so we must pay attention to the data when we put the formula to calculate the parallelogram:

Height multiplied by the side of the height:

AB×AE=S AB\times AE=S

We will mark AE with the letter a and therefore AB will be a+3:

a×(a+3)=32 a\times(a+3)=32

We open the parentheses:

a2+3a=32 a^2+3a=32

We use the trinomial/roots formula:

a2+3a32=0 a^2+3a-32=0 (a+8)(a5)=0 (a+8)(a-5)=0

That means we have two options:

a=8,a=5 a=-8,a=5

Since it is not possible to place a negative side in the formula to calculate the areaa=5 a=5

Now we can calculate the sides:

AE=5 AE=5

AB=5+3=8 AB=5+3=8

Answer

8 cm

Exercise #15

ABCD is a parallelogram with a perimeter of 38 cm.

AB is twice as long as CE.

AD is three times shorter than CE.

CE is the height of the parallelogram.

Calculate the area of the parallelogram.

AAABBBCCCDDDEEE

Video Solution

Step-by-Step Solution

Let's call CE as X

According to the data

AB=x+2,AD=x3 AB=x+2,AD=x-3

The perimeter of the parallelogram:

2(AB+AD) 2(AB+AD)

38=2(x+2+x3) 38=2(x+2+x-3)

38=2(2x1) 38=2(2x-1)

38=4x2 38=4x-2

38+2=4x 38+2=4x

40=4x 40=4x

x=10 x=10

Now it can be argued:

AD=103=7,CE=10 AD=10-3=7,CE=10

The area of the parallelogram:

CE×AD=10×7=70 CE\times AD=10\times7=70

Answer

70 cm²