ABCD is a parallelogram.
Angle ACB is equal to angle EBC.
BF = 6
CE = 9
BF is perpendicular to DE.
Calculate the area of the parallelogram.
ABCD is a parallelogram.
Angle ACB is equal to angle EBC.
BF = 6
CE = 9
BF is perpendicular to DE.
Calculate the area of the parallelogram.
ABCD is a parallelogram
BFCE is a deltoid
What is the area of the parallelogram ABCD?
ABCD and AKBL are parallel.
Angle ALD equals 90 degrees.
Are the areas of the parallelograms equal?
ABCD is a parallelogram.
Angle ACB is equal to angle EBC.
BF = 6
CE = 9
BF is perpendicular to DE.
Calculate the area of the parallelogram.
Given that angle ACB is equal to angle CBE, it follows that AC is parallel to BE
since alternate angles between parallel lines are equal.
As we know that ABCD is a parallelogram, AB is parallel to DC and therefore AB is also parallel to CE since it is a line that continues DC.
Given that AC is parallel to BE and, in addition, AB is parallel to CE, it can be argued that ABCE is a parallelogram and, therefore, each pair of opposite sides in a parallelogram are parallel and equal.
From this it is concluded that AB=CE=9
Now we calculate the area of the parallelogram ABCD according to the data.
We replace the data accordingly:
54 cm²
ABCD is a parallelogram
BFCE is a deltoid
What is the area of the parallelogram ABCD?
First, we must remember the formula for the area of a parallelogram:.
In this case, we will try to find the height CH and the side BC.
We start from the side
First, let's observe the small triangle EBG,
As it is a right triangle, we can use the Pythagorean theorem (
)
Now, let's start looking for GC.
First, remember that the deltoid has two pairs of equal adjacent sides, therefore:
Now we can also do Pythagoras in the triangle GCE.
Now we can calculate the side BC:
Now, let's observe the triangle BGE and DHC
Angle BGE = 90°
Angle CHD = 90°
Angle CDH=EBG because these are opposite parallel angles.
Therefore, there is a ratio of similarity between the two triangles, so:
Now that there is a height and a side, all that remains is to calculate.
ABCD and AKBL are parallel.
Angle ALD equals 90 degrees.
Are the areas of the parallelograms equal?
Yes.