Below is a circle bounded by a parallelogram:
All meeting points are tangential to the circle.
The circumference is 25.13.
What is the area of the parallelogram?
Below is a circle bounded by a parallelogram:
All meeting points are tangential to the circle.
The circumference is 25.13.
What is the area of the parallelogram?
First, we add letters as reference points:
Let's observe points A and B.
We know that two tangent lines to a circle that start from the same point are parallel to each other.
Therefore:
And from here we can calculate:
Now we need the height of the parallelogram.
We know that F is tangent to the circle, so the diameter that comes out of point F will also be the height of the parallelogram.
It is also known that the diameter is equal to two radii.
Since the circumference is 25.13.
Circumference formula:
We replace and solve:
The height of the parallelogram is equal to two radii, that is, 8.
And from here you can calculate with a parallelogram area formula: