Below is a circle bounded by a parallelogram:
All meeting points are tangential to the circle.
The circumference is 25.13.
What is the area of the parallelogram?
We have hundreds of course questions with personalized recommendations + Account 100% premium
Below is a circle bounded by a parallelogram:
All meeting points are tangential to the circle.
The circumference is 25.13.
What is the area of the parallelogram?
First, we add letters as reference points:
Let's observe points A and B.
We know that two tangent lines to a circle that start from the same point are parallel to each other.
Therefore:
And from here we can calculate:
Now we need the height of the parallelogram.
We know that F is tangent to the circle, so the diameter that comes out of point F will also be the height of the parallelogram.
It is also known that the diameter is equal to two radii.
Since the circumference is 25.13.
Circumference formula:
We replace and solve:
The height of the parallelogram is equal to two radii, that is, 8.
And from here you can calculate with a parallelogram area formula:
A parallelogram has a length equal to 6 cm and a height equal to 4.5 cm.
Calculate the area of the parallelogram.
Get unlimited access to all 18 Circle questions, detailed video solutions, and personalized progress tracking.
Unlimited Video Solutions
Step-by-step explanations for every problem
Progress Analytics
Track your mastery across all topics
Ad-Free Learning
Focus on math without distractions
No credit card required • Cancel anytime