Basis of a power

🏆Practice powers

The base of the power is the number that is multiplied by itself as many times as indicated by the exponent.
The base appears as a number or algebraic expression. In its upper right corner, the exponent is shown in small.

The base of the power has to stand out clearly since it is the base!

The base of the power can be positive or negative and, depending on the exponent, the sign in the result will be modified.

A - Base of a power

Start practice

Test yourself on powers!

einstein

What is the missing exponent?

\( -7^{\square}=-49 \)

Practice more now

Points that are important to remember:

  • When the base of the power is a positive number and the exponent is an even number the result will be positive.
  • Even when the base of the power is a positive number and the exponent is an odd number, the result will also be positive.
  • Even when the base of the power is a negative number and the exponent is an even number, the result will be positive.
  • When the base of the power is a negative number and the exponent is odd, the result will be negative.

The base of the power is the number that is multiplied by itself as many times as indicated by the exponent.

How can you remember it?
It is called base because the power is raised on it: it is our base. If the power has no base, then there is no power.
How can we identify the base of the power?
The base of the power will appear as a number or algebraic expression. In its upper right corner we can see, in small, the exponent.
The base of the power has to stand out clearly since it is the base!
Let's see it in the following example:
a2a^2
What is the base of the power?
Of course a!
The base on which we raise the power is a.
In this example the exponent asks a, the base of the power, to multiply by itself twice.
That is:
a×a a\times a
We can say that:
a2=a×a a^2=a\times a

Exercises on the base of a power

Exercise 1

Prompt

What is the value we will place to solve the following equation?

7=49 7^{\square}=49

Solution

To answer this question it is possible to answer in two ways:

One way is replacement:

We place power of 2 2 and it seems that we have arrived at the correct result, ie:

72=49 7²=49

Another way is by using the root

49=7 \sqrt{49}=7

That is

72=49 7²=49

Answer:

2 2


Join Over 30,000 Students Excelling in Math!
Endless Practice, Expert Guidance - Elevate Your Math Skills Today
Test your knowledge

Exercise 2

Query

What is the result of the following power?

(23)3 (\frac{2}{3})^3

To solve this question we must first understand the meaning of the exercise.

(23)(23)(23) (\frac{2}{3})\cdot(\frac{2}{3})\cdot(\frac{2}{3})

232323 \frac{2}{3}\cdot\frac{2}{3}\cdot\frac{2}{3}

Now everything is simpler... Correct?

222=8 2\cdot2\cdot2=8

333=27 3\cdot3\cdot3=27

We obtain: 827 \frac{8}{27}

Answer

827 \frac{8}{27}


Exercise 3

Consigna

ababa2 a\cdot b\cdot a\cdot b\cdot a^2

Solution:

If we break down the exercise we see that it is divided into 2 2 coefficients of a a and coefficients of b b

Let's start with the coefficient of a a

What do we have?

We have aaa2 a\cdot a\cdot a²

That is, we can write this like this:

aaaa a\cdot a\cdot a\cdot a

This means we can write it like this:

a4 a^4

Let's move on to the coefficient b b .

bb=b2 b\cdot b=b²

We add the two together and it turns out that:

a4b2 a^4\cdot b^2

Answer:

a4b2 a^4\cdot b^2


Do you know what the answer is?

Exercise 4

Assignment

Solve the exercise:

(a5)7= \left(a^5\right)^7=

Solution

We will use the formula

(am)n=am×n (a^m)^n=a^{m\times n}

We multiply the powers together and solve accordingly.

a5×7=a35 a^{5\times7}=a^{35}

Answer

a35 a^{35}


Exercise 5

Consigna

(y×7×3)4= (y\times7\times3)^4=

Solution

We will use the formula

(a×b×c)m=am×bm×cm (a\times b\times c)^m=a^m\times b^m\times c^m

We solve accordingly

(y×7×3)4=y4×74×34 (y\times7\times3)^4=y^4\times7^4\times3^4

Answer

y4×74×34 y^4\times7^4\times3^4


Check your understanding

Review questions

How do you read the base and exponent?

In order to read a power, there are special cases such as the power 2 2 and 3 3 .

a2 a^2 can be read as: "a a to the second power", "a a squared" or "a a to the power two."

a3 a^3 can be read as: "a a to the third power", "a a cubed".

The others we can read as:

ax a^x "a a raised to the power x x "

a4 a^4 ,a a to the fourth power", " to the fourth power", " to the fifth power", " to the fifth power".

a5 a^5 ,a a to the fifth power".

a6 a^6 : "a a to the sixth power" : " to the sixth power".


What is the base of 3²?

In this example the base is 3 3 and the power is the 2 2


Do you think you will be able to solve it?

How is the result of a negative number to an even power and to an odd power?

When we have a negative number and we raise it to a power we can have the following cases:

(x)par=+ \left(-x\right)^{\text{par}}=+

(x)impar= \left(-x\right)^{impar}=-

Let's look at the following examples:

Example 1

Calculate the following power

(2)3 \left(-2\right)^3

We can observe that it is a negative number raised to an odd power, therefore the result will be negative, since by the law of signs it is as follows:

(2)3=(2)(2)(2)=(4)(2)=8 \left(-2\right)^3=\left(-2\right)\left(-2\right)\left(-2\right)=\left(4\right)\left(-2\right)=-8

Answer

8 -8

Example 2

Calculate the following power

(4)4= \left(-4\right)^4=

In this example we observe that the power is even, therefore the result will be positive by sign laws, remaining as follows:

(4)4=(4)(4)(4)(4)=(16)(4)(4) \left(-4\right)^4=\left(-4\right)\left(-4\right)\left(-4\right)\left(-4\right)=\left(16\right)\left(-4\right)\left(-4\right)

(16)(4)(4)=(64)(4)=256 \left(16\right)\left(-4\right)\left(-4\right)=\left(-64\right)\left(-4\right)=256

Answer

256 256


Test your knowledge

Examples with solutions for Basis of a power

Exercise #1

Choose the expression that is equal to the following:

27 2^7

Video Solution

Step-by-Step Solution

To solve this problem, we'll focus on expressing the power 27 2^7 as a series of multiplications.

  • Step 1: Identify the given power expression 27 2^7 .
  • Step 2: Convert 27 2^7 into a product of repeated multiplication. This involves writing 2 multiplied by itself for a total of 7 times.
  • Step 3: The expanded form of 27 2^7 is 2×2×2×2×2×2×2 2 \times 2 \times 2 \times 2 \times 2 \times 2 \times 2 .

By comparing this expanded form with the provided choices, we see that the correct expression is:

2222222 2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2

Therefore, the solution to the problem is the expression that matches this expanded multiplication form, which is the choice 1: 2222222\text{1: } 2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2.

Answer

2222222 2\cdot2\cdot2\cdot2\cdot2\cdot2\cdot2

Exercise #2

Which of the following is equivalent to the expression below?

10,0001 10,000^1

Video Solution

Step-by-Step Solution

To solve this problem, we will apply the rule of exponents:

  • Any number raised to the power of 1 remains unchanged. Therefore, by the identity property of exponents, 10,0001=10,000 10,000^1 = 10,000 .

Given the choices:

  • 10,00010,000 10,000 \cdot 10,000 : This is 10,0002 10,000^2 .
  • 10,0001 10,000 \cdot 1 : Simplifying this expression yields 10,000, which is equivalent to 10,0001 10,000^1 .
  • 10,000+10,000 10,000 + 10,000 : This results in 20,000, not equivalent to 10,0001 10,000^1 .
  • 10,00010,000 10,000 - 10,000 : This results in 0, not equivalent to 10,0001 10,000^1 .

Therefore, the correct choice is 10,0001 10,000 \cdot 1 , which simplifies to 10,000, making it equivalent to 10,0001 10,000^1 .

Thus, the expression 10,0001 10,000^1 is equivalent to:

10,0001 10,000 \cdot 1

Answer

10,0001 10,000\cdot1

Exercise #3

62= 6^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Recognize that 62 6^2 means 6×6 6 \times 6 .
  • Step 2: Perform the multiplication of 6 by itself.

Now, let's work through each step:
Step 1: The expression 62 6^2 indicates we need to multiply 6 by itself.
Step 2: Calculating 6×6 6 \times 6 gives us 36.

Therefore, the value of 62 6^2 is 36.

Answer

36

Exercise #4

112= 11^2=

Video Solution

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Set up the multiplication as 11×11 11 \times 11 .
  • Step 2: Compute the product using basic arithmetic.
  • Step 3: Compare the result with the provided multiple-choice answers to identify the correct one.

Now, let's work through each step:
Step 1: We begin with the calculation 11×11 11 \times 11 .
Step 2: Perform the multiplication:

  1. Multiply the units digits: 1×1=1 1 \times 1 = 1 .
  2. Next, for the tens digits: 11×10=110 11 \times 10 = 110 .
  3. Add the results: 110+1=111 110 + 1 = 111 . This doesn't seem right, so let's break it down further.

Let's examine a more structured multiplication method:

Multiply 11 11 by 1 1 (last digit of the second 11), we get 11.
Multiply 11 11 by 10 10 (tens place of the second 11), we get 110.

If we align correctly and add the partial products:

     11
+   110
------------
   121

Step 3: The correct multiplication yields the final result as 121 121 . Upon reviewing the provided choices, the correct answer is choice 4: 121 121 .

Therefore, the solution to the problem is 121 121 .

Answer

121

Exercise #5

Which of the following clauses is equal to 100?

Video Solution

Step-by-Step Solution

To determine which expression equals 100, we need to evaluate each option:

  • Option 1: 5255^2\cdot5
    - Calculate 52=255^2 = 25.
    - Then compute 255=12525 \cdot 5 = 125.
  • Option 2: 4244^2\cdot4
    - Calculate 42=164^2 = 16.
    - Then compute 164=6416 \cdot 4 = 64.
  • Option 3: 25425^4
    - Calculate (254)(25^4), which simplified through breakdown is larger than 100 because 252=62525^2 = 625. Hence this 25 to the power of 4 will definitely be much larger than 100.
  • Option 4: 52225^2\cdot2^2
    - Calculate 52=255^2 = 25.
    - Calculate 22=42^2 = 4.
    - Compute 254=10025 \cdot 4 = 100.

Therefore, the expression in Option 4, 52225^2\cdot2^2, equals 100. Thus, the correct choice is 4.

Thus, the clause that equals 100 is 52225^2\cdot2^2.

Answer

5222 5^2\cdot2^2

Start practice