(x+4)(3x−41)=3(x2+5)
x=?
To solve the equation (x+4)(3x−41)=3(x2+5), follow these steps:
- Step 1: Expand the left side of the equation
(x+4)(3x−41)
Using the distributive property:
x(3x)+x(−41)+4(3x)+4(−41)
=3x2−4x+12x−1
- Step 2: Simplify the expanded left side
Combine like terms:
3x2+(12x−4x)−1
Convert 4x to a common denominator: 448x−4x=447x
Thus, the left side is: 3x2+447x−1
- Step 3: Simplify the right side
3(x2+5)
=3x2+15
- Step 4: Set the simplified expressions equal and solve for x
3x2+447x−1=3x2+15
Subtract 3x2 from both sides:
447x−1=15
Add 1 to both sides:
447x=16
Multiply both sides by 4 to clear the fraction:
47x=64
x=4764
Express 4764 as a mixed number:
x=14717
Therefore, the solution to the equation is x=14717.
14717