Solving Quadratic Equations using Factoring: Solving an equation using all techniques

Examples with solutions for Solving Quadratic Equations using Factoring: Solving an equation using all techniques

Exercise #1

3(4a+8)=27a -3(4a+8)=27a

a=? a=\text{?}

Video Solution

Step-by-Step Solution

To open the parentheses on the left side, we'll use the formula:

a(b+c)=abac -a\left(b+c\right)=-ab-ac

12a24=27a -12a-24=27a

We'll arrange the equation so that the terms with 'a' are on the right side, and maintain the plus and minus signs during the transfer:

24=27a+12a -24=27a+12a

Let's group the terms on the right side:

24=39a -24=39a

Let's divide both sides by 39:

2439=39a39 -\frac{24}{39}=\frac{39a}{39}

2439=a -\frac{24}{39}=a

Note that we can reduce the fraction since both numerator and denominator are divisible by 3:

813=a -\frac{8}{13}=a

Answer

813 -\frac{8}{13}

Exercise #2

Solve for X:

12(x+3)8x=3 \frac{1}{2}(x+3)-8x=3

Video Solution

Answer

15 -\frac{1}{5}

Exercise #3

Solve for X:

5(x8)+12=0 5(x-8)+\frac{1}{2}=0

Video Solution

Answer

7910 \frac{79}{10}

Exercise #4

Solve for X:

8(2x)=12+x -8(2-x)=\frac{1}{2}+x

Video Solution

Answer

3314 \frac{33}{14}

Exercise #5

6c+7+4c=3(c1) 6c+7+4c=3(c-1)

c=? c=\text{?}

Video Solution

Answer

137 -1\frac{3}{7}

Exercise #6

7y+10y+5=2(y+3) 7y+10y+5=2(y+3)

y=? y=\text{?}

Video Solution

Answer

115 \frac{1}{15}

Exercise #7

Solve for X:

12(x14)=12(3x) -\frac{1}{2}(x-\frac{1}{4})=\frac{1}{2}(3-x)

Video Solution

Answer

There is no solution.

Exercise #8

Solve for X:

16(x4)=14(13x+3) \frac{1}{6}(x-4)=\frac{1}{4}(\frac{1}{3}x+3)

Video Solution

Answer

17

Exercise #9

Solve for X:

18(12x)=14(x14) \frac{1}{8}(\frac{1}{2}-x)=\frac{1}{4}(x-\frac{1}{4})

Video Solution

Answer

0

Exercise #10

3x+23=4(x+112) 3x+\frac{2}{3}=4(x+\frac{1}{12})

x=? x=\text{?}

Video Solution

Answer

13 \frac{1}{3}

Exercise #11

16a20a+15=2(52a) 16a-20a+15=2(5-2a)

a=? a=\text{?}

Video Solution

Answer

No solution

Exercise #12

2x+4513x=5(x+7) 2x+45-\frac{1}{3}x=5(x+7)

x=? x=\text{?}

Video Solution

Answer

3

Exercise #13

74(x)+2x5(x+3)=x -\frac{7}{4}(-x)+2x-5(x+3)=-x

x=? x=\text{?}

Video Solution

Answer

60 -60

Exercise #14

Solve for X:

8(x+3)1+4x=8(x+3)5(x4) 8(x+3)-1+4x=8(x+3)-5(x-4)

Video Solution

Answer

73 \frac{7}{3}

Exercise #15

Solve for X:

(5x)12+3x4(x2)=12(x+4) (5-x)\cdot\frac{1}{2}+3x-4(x-2)=\frac{1}{2}(x+4)

Video Solution

Answer

174 \frac{17}{4}

Exercise #16

150+75m+m8m3=(9005m2)112 150+75m+\frac{m}{8}-\frac{m}{3}=(900-\frac{5m}{2})\cdot\frac{1}{12}

m=? m=\text{?}

Video Solution

Answer

1 -1

Exercise #17

t+2(4+t)(t+5)=(t5)(2t3) -t+2(4+t)(t+5)=(t-5)(2t-3)

t=? t=\text{?}

Video Solution

Answer

56 -\frac{5}{6}

Exercise #18

(x+2)(2x4)=2x2+x+10 (x+2)(2x-4)=2x^2+x+10

Video Solution

Answer

18 -18

Exercise #19

(x+4)(3x14)=3(x2+5) (x+4)(3x-\frac{1}{4})=3(x^2+5)

x=? x=?

Video Solution

Answer

11747 1\frac{17}{47}

Exercise #20

4(x2+5)=(x+7)(4x9)+5 -4(x^2+5)=(-x+7)(4x-9)+5

x=? x=?

Video Solution

Answer

1137 1\frac{1}{37}