Solve Linear Equation: 6c+7+4c=3(c-1) Step-by-Step

Question

6c+7+4c=3(c1) 6c+7+4c=3(c-1)

c=? c=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:04 Collect terms
00:07 Open parentheses properly, multiply by each term
00:16 We want to isolate the unknown C
00:19 Arrange the equation so that one side has only the unknown C
00:38 Isolate the unknown C
00:47 And this is the solution to the question

Step-by-Step Solution

To solve the equation 6c+7+4c=3(c1) 6c + 7 + 4c = 3(c - 1) , follow these steps:

  • Step 1: Combine like terms on the left side of the equation.
    The like terms are 6c6c and 4c4c. Combining these gives 10c+7=3(c1)10c + 7 = 3(c - 1).
  • Step 2: Apply the distributive property on the right side of the equation.
    The term 3(c1)3(c - 1) expands to 3c33c - 3. Therefore, the equation becomes 10c+7=3c310c + 7 = 3c - 3.
  • Step 3: Move all terms involving cc to one side and constants to the other.
    Subtract 3c3c from both sides: 10c3c+7=310c - 3c + 7 = -3 which simplifies to 7c+7=37c + 7 = -3.
  • Step 4: Isolate the term with cc by subtracting 7 from both sides of the equation.
    This gives 7c=377c = -3 - 7 or 7c=107c = -10.
  • Step 5: Solve for cc.
    Divide both sides by 7: c=107=107c = \frac{-10}{7} = -\frac{10}{7}. This can be converted to a mixed number, giving 137-1\frac{3}{7}.

Therefore, the solution to the equation is c=137 c = -1\frac{3}{7} . This corresponds to choice 2 in the provided answer choices.

Answer

137 -1\frac{3}{7}