Mathematical Inequality: Which Value is Larger?

Question

Which value is greater?

Video Solution

Solution Steps

00:00 Choose the largest value
00:03 When there is a power of a power, the combined exponent is the product of the exponents
00:07 Let's calculate the product of the exponents
00:10 Any number raised to the power of 0 always equals 1
00:14 When multiplying powers with equal bases
00:17 The exponent of the result equals the sum of the exponents
00:20 When dividing powers with equal bases
00:23 The exponent of the result equals the difference of the exponents
00:27 Let's find the largest exponent, this is the largest value
00:30 And this is the solution to the question

Step-by-Step Solution

To determine which value is greater, let's simplify each choice:

Choice 1: (a2)4 (a^2)^4
By using the power of a power rule: (xm)n=xm×n (x^m)^n = x^{m \times n} , it simplifies to:
(a2)4=a2×4=a8 (a^2)^4 = a^{2 \times 4} = a^8 .

Choice 2: a2+a0 a^2 + a^0
Evaluate using the zero exponent rule, a0=1 a^0 = 1 :
This expression becomes a2+1 a^2 + 1 .

Choice 3: a2×a1 a^2 \times a^1
Apply the product of powers rule: xm×xn=xm+n x^m \times x^n = x^{m+n} :
This simplifies to a2+1=a3 a^{2+1} = a^3 .

Choice 4: a14a9 \frac{a^{14}}{a^9}
Apply the quotient of powers rule: xmxn=xmn \frac{x^m}{x^n} = x^{m-n} :
This simplifies to a149=a5 a^{14-9} = a^5 .

Now, let's compare these simplified forms:
We have a8 a^8 , a2+1 a^2 + 1 , a3 a^3 , and a5 a^5 .

For a>1 a > 1 , exponential functions grow rapidly, thus:
- a8 a^8 is greater than a5 a^5 .
- a8 a^8 is greater than a3 a^3 .
- a8 a^8 is greater than a2+1 a^2 + 1 for sufficiently large aa.

Thus, the expression with the highest power, and therefore the greatest value, is (a2)4 (a^2)^4 .

Answer

(a2)4 (a^2)^4


More Questions