Mathematical Comparison: Determining the Greater Value Between Two Numbers

Question

Which value is greater?

Video Solution

Solution Steps

00:00 Select the largest value
00:03 When multiplying powers with equal bases
00:06 The power of the result equals the sum of the powers
00:09 When there's a power of a power, the combined power is the product of the powers
00:13 When dividing powers with equal bases
00:16 The power of the result equals the difference of the powers
00:19 We'll determine the largest power, this is the largest value
00:22 This is the solution

Step-by-Step Solution

To determine which expression has the greatest value, we apply the exponent rules to simplify each choice:

  • For x3×x4 x^3 \times x^4 , using the product rule: x3×x4=x3+4=x7 x^3 \times x^4 = x^{3+4} = x^7 .
  • For (x3)5 (x^3)^5 , using the power of a power rule: (x3)5=x3×5=x15 (x^3)^5 = x^{3 \times 5} = x^{15} .
  • x10 x^{10} is already in its simplest form.
  • For x9x2 \frac{x^9}{x^2} , using the quotient rule: x9x2=x92=x7 \frac{x^9}{x^2} = x^{9-2} = x^7 .

To identify the greater value, we compare the exponents:

  • x7 x^7 from choices 1 and 4.
  • x15 x^{15} from choice 2.
  • x10 x^{10} from choice 3.

The expression with the largest exponent is (x3)5 (x^3)^5 or x15 x^{15} .

Therefore, the expression with the greatest value is (x3)5(x^3)^5.

Answer

(x3)5 (x^3)^5