Examples with solutions for Solving Equations by using Addition/ Subtraction: One sided equations

Exercise #1

Solve for A:

a5=10 a-5=10

Step-by-Step Solution

To solve for a a , we need to isolate it on one side of the equation. Starting with:

a5=10 a-5=10

Add 5 5 to both sides to get:

a5+5=10+5 a-5+5=10+5

This simplifies to:

a=15 a=15

Therefore, the solution isa=15 a = 15 .

Answer

15 15

Exercise #2

Solve for B:

b+6=14 b+6=14

Step-by-Step Solution

To solve for b b , we need to isolate it on one side of the equation. Starting with:

b+6=14 b+6=14

Subtract6 6 from both sides to get:

b+66=146 b+6-6=14-6

This simplifies to:

b=8 b=8

Therefore, the solution is b=8 b = 8 .

Answer

8 8

Exercise #3

Solve for X:

x+3=7 x + 3 = 7

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 3 from both sides:
x+33=73 x + 3 - 3 = 7 - 3 simplifies to
x=4 x = 4 .

Answer

4

Exercise #4

Solve for X:

x5=10 x - 5 = -10

Step-by-Step Solution

To solve the equation x5=10 x - 5 = -10 , we need to isolate x x .

Step 1: Add 5 to both sides of the equation to cancel out the -5 on the left side.
x5+5=10+5 x - 5 + 5 = -10 + 5
Step 2: Simplify both sides.
x=5 x = -5
Thus, the solution is x=5 x = -5 .

Answer

5 -5

Exercise #5

Solve for X:

x+7=12 x + 7 = 12

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 7 from both sides:
x+77=127 x + 7 - 7 = 12 - 7 simplifies to
x=5 x = 5 .

Answer

5

Exercise #6

Solve for X:

x+7=12 x+7=12

Step-by-Step Solution

To solve for x x , we need to isolate it on one side of the equation. Starting with:

x+7=12 x+7=12

Subtract7 7 from both sides to get:

x+77=127 x+7-7=12-7

This simplifies to:

x=5 x=5

Therefore, the solution is x=5 x = 5 .

Answer

5 5

Exercise #7

Solve for X:

x7=14 x - 7 = 14

Step-by-Step Solution

To solve the equation x7=14 x - 7 = 14 , we need to isolate x x .

Step 1: Add 7 to both sides of the equation to cancel out the -7 on the left side.
x7+7=14+7 x - 7 + 7 = 14 + 7
Step 2: Simplify both sides.
x=21 x = 21
Thus, the solution is x=21 x = 21 .

Answer

21 21

Exercise #8

Solve for X:

x+8=10 x + 8 = 10

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 8 from both sides:
x+88=108 x + 8 - 8 = 10 - 8 simplifies to
x=2 x = 2 .

Answer

2

Exercise #9

Solve for X:

x+9=15 x + 9 = 15

Step-by-Step Solution

Step-by-step solution:

1. Begin with the equation: x+9=15 x + 9 = 15

2. Subtract 9 from both sides: x+99=159 x + 9 - 9 = 15 - 9 , which simplifies to x=6 x = 6

Answer

6

Exercise #10

Solve for X:

x+9=3 x + 9 = 3

Step-by-Step Solution

To solve the equation x+9=3 x + 9 = 3 , we need to isolate x x .

Step 1: Subtract 9 from both sides of the equation to cancel out the +9 on the left side.
x+99=39 x + 9 - 9 = 3 - 9
Step 2: Simplify both sides.
x=6 x = -6
Thus, the solution is x=6 x = -6 .

Answer

6 -6

Exercise #11

Solve for Y:

y4=9 y-4=9

Step-by-Step Solution

To solve for y y , we need to isolate it on one side of the equation. Starting with:

y4=9 y-4=9

Add 4 4 to both sides to get:

y4+4=9+4 y-4+4=9+4

This simplifies to:

y=13 y=13

Therefore, the solution is y=13 y = 13 .

Answer

13 13

Exercise #12

Solve for Z:

z+2=8 z+2=8

Step-by-Step Solution

To solve for z z , we need to isolate it on one side of the equation. Starting with:

z+2=8 z+2=8

Subtract 2 2 from both sides to get:

z+22=82 z+2-2=8-2

This simplifies to:

z=6 z=6

Therefore, the solution is z=6 z = 6 .

Answer

6 6

Exercise #13

Solve for X:

2+x5=43 2 + x - 5 = 4 - 3

Step-by-Step Solution

To solve2+x5=43 2 + x - 5 = 4 - 3 , we first simplify both sides:

Left side:
25+x=3+x 2 - 5 + x = -3 + x

Right side:
43=1 4 - 3 = 1

Now the equation is 3+x=1 -3 + x = 1 .

Add 3 to both sides:
x=1+3 x = 1 + 3

So,x=4 x = 4 .

Answer

4

Exercise #14

Solve for X:

3x=106 3 - x = 10 - 6

Step-by-Step Solution

First, simplify the right side of the equation:
106=4 10 - 6 = 4
Hence, the equation becomes 3x=4 3 - x = 4 .
Subtract 3 from both sides to isolate x x :
3x3=43 3 - x - 3 = 4 - 3
This simplifies to:
x=1 -x=1
Divide by -1 to solve forx x :
x=1 x=-1
Therefore, the solution is x=1 x = 1 .

Answer

-1

Exercise #15

Solve for X:

3+x+1=62 3 + x + 1 = 6 - 2

Step-by-Step Solution

To solve 3+x+1=62 3 + x + 1 = 6 - 2 , we first simplify both sides:

Left side:
3+1+x=4+x 3 + 1 + x = 4 + x

Right side:
62=4 6 - 2 = 4

Now the equation is 4+x=4 4 + x = 4 .

Subtract 4 from both sides:
x=44 x = 4 - 4

So, x=0 x = 0 .

Answer

0

Exercise #16

Solve for X:

3+x2=73 3 + x - 2 = 7 - 3

Step-by-Step Solution

First, simplify both sides of the equation:

Left side: 3+x2=1+x 3 + x - 2 = 1 + x

Right side: 73=4 7 - 3 = 4

So the equation becomes:

1+x=4 1 + x = 4

Next, isolate x x by subtracting 1 from both sides:

1+x1=41 1 + x - 1 = 4 - 1

This simplifies to:

x=3 x = 3

Answer

3

Exercise #17

Solve for X:

5x=124 5 - x = 12 - 4

Step-by-Step Solution

First, simplify the right side of the equation:
124=8 12 - 4 = 8
Hence, the equation becomes 5x=8 5 - x = 8 .
Subtract 5 from both sides to isolate x x :
5x5=85 5 - x - 5 = 8 - 5
This simplifies to:
x=3 -x=3
Divide by -1 to solve for x x :
x=3 x=-3
Therefore, the solution is x=3 x=-3 .

Answer

-3

Exercise #18

Solve for X:

5+x3=2+1 5 + x - 3 = 2 + 1

Step-by-Step Solution

To solve 5+x3=2+1 5 + x - 3 = 2 + 1 , we first simplify both sides:

Left side:
53+x=2+x 5 - 3 + x = 2 + x

Right side:
2+1=3 2 + 1 = 3

Now the equation is 2+x=3 2 + x = 3 .

Subtract 2 from both sides:
x=32 x = 3 - 2

So, x=1 x = 1 .

Answer

1

Exercise #19

Solve for X:

6x=102 6 - x = 10 - 2

Step-by-Step Solution

To solve the equation 6x=102 6 - x = 10 - 2 , follow these steps:

  1. First, simplify both sides of the equation:

  2. On the right side, calculate 102=8 10 - 2 = 8 .

  3. The equation simplifies to 6x=8 6 - x = 8 .

  4. To isolate x, subtract 6 from both sides:

  5. 6x6=86 6 - x - 6 = 8 - 6

  6. This simplifies to x=2 -x = 2 .

  7. Multiply both sides by -1 to solve for x:

  8. x=2×1=2 x = -2 \times -1 = 2 .

  9. Since the problem requires only manipulation by transferring terms, the initial approach to the equation setup should lead to x = 4 as the solution before re-evaluation.

Therefore, the correct solution to the equation is x=2 x=2 .

Answer

2

Exercise #20

Solve for X:

7x=155 7 - x = 15 - 5

Step-by-Step Solution

First, simplify the right side of the equation:
155=10 15 - 5 = 10
Hence, the equation becomes 7x=10 7 - x = 10 .
Subtract 7 from both sides to isolate x x :
7x7=107 7 - x - 7 = 10 - 7
This simplifies to:
x=3 -x=3
Divide by -1 to solve forx x :
x=3 x=-3
Therefore, the solution is x=3 x=-3 .

Answer

-3