Solve the Equation: 2y(1/y) - y + 4 = 8y Step-by-Step

Question

2y1yy+4=8y 2y\cdot\frac{1}{y}-y+4=8y

y=? y=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:03 Let's reduce what we can
00:08 Collect terms
00:16 Isolate the unknown Y
00:32 Factor 6 into 2 and 3
00:36 Factor 9 into 3 and 3
00:45 Let's reduce what we can
00:51 And this is the solution to the question

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Simplify the term 2y1y 2y \cdot \frac{1}{y}
  • Rearrange the equation to group similar terms
  • Solve for y y

Now, let's work through each step:

Step 1: Simplify the expression 2y1y 2y \cdot \frac{1}{y} .

The term 2y1y 2y \cdot \frac{1}{y} simplifies directly to 2 2 since y y in the numerator and denominator cancel each other out assuming y0 y \neq 0 . Therefore, the equation becomes:

2y+4=8y 2 - y + 4 = 8y

Step 2: Combine like terms on the left-hand side:

2+4=6 2 + 4 = 6 , so the equation now is 6y=8y 6 - y = 8y .

Step 3: Rearrange the equation to isolate y y on one side. Add y y to both sides to get rid of the negative y y :

6=8y+y 6 = 8y + y

This simplifies to:

6=9y 6 = 9y

Step 4: Solve for y y by dividing both sides by 9:

y=69 y = \frac{6}{9}

Simplify the fraction to get:

y=23 y = \frac{2}{3}

Therefore, the solution to the problem is 23 \frac{2}{3} .

Answer

23 \frac{2}{3}