Examples with solutions for Solving Equations by using Addition/ Subtraction: Binomial

Exercise #1

Solve for X:

x+3=7 x + 3 = 7

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 3 from both sides:
x+33=73 x + 3 - 3 = 7 - 3 simplifies to
x=4 x = 4 .

Answer

4

Exercise #2

Solve for X:

x+7=12 x + 7 = 12

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 7 from both sides:
x+77=127 x + 7 - 7 = 12 - 7 simplifies to
x=5 x = 5 .

Answer

5

Exercise #3

Solve for X:

x+8=10 x + 8 = 10

Step-by-Step Solution

To solve for x x , start by isolating x x on one side of the equation:
Subtract 8 from both sides:
x+88=108 x + 8 - 8 = 10 - 8 simplifies to
x=2 x = 2 .

Answer

2

Exercise #4

Solve for X:

x+9=15 x + 9 = 15

Step-by-Step Solution

Step-by-step solution:

1. Begin with the equation: x+9=15 x + 9 = 15

2. Subtract 9 from both sides: x+99=159 x + 9 - 9 = 15 - 9 , which simplifies to x=6 x = 6

Answer

6

Exercise #5

Solve for X:

2+x5=43 2 + x - 5 = 4 - 3

Step-by-Step Solution

To solve2+x5=43 2 + x - 5 = 4 - 3 , we first simplify both sides:

Left side:
25+x=3+x 2 - 5 + x = -3 + x

Right side:
43=1 4 - 3 = 1

Now the equation is 3+x=1 -3 + x = 1 .

Add 3 to both sides:
x=1+3 x = 1 + 3

So,x=4 x = 4 .

Answer

4

Exercise #6

Solve for X:

3x=106 3 - x = 10 - 6

Step-by-Step Solution

First, simplify the right side of the equation:
106=4 10 - 6 = 4
Hence, the equation becomes 3x=4 3 - x = 4 .
Subtract 3 from both sides to isolate x x :
3x3=43 3 - x - 3 = 4 - 3
This simplifies to:
x=1 -x=1
Divide by -1 to solve forx x :
x=1 x=-1
Therefore, the solution is x=1 x = 1 .

Answer

-1

Exercise #7

Solve for X:

3+x+1=62 3 + x + 1 = 6 - 2

Step-by-Step Solution

To solve 3+x+1=62 3 + x + 1 = 6 - 2 , we first simplify both sides:

Left side:
3+1+x=4+x 3 + 1 + x = 4 + x

Right side:
62=4 6 - 2 = 4

Now the equation is 4+x=4 4 + x = 4 .

Subtract 4 from both sides:
x=44 x = 4 - 4

So, x=0 x = 0 .

Answer

0

Exercise #8

Solve for X:

3+x2=73 3 + x - 2 = 7 - 3

Step-by-Step Solution

First, simplify both sides of the equation:

Left side: 3+x2=1+x 3 + x - 2 = 1 + x

Right side: 73=4 7 - 3 = 4

So the equation becomes:

1+x=4 1 + x = 4

Next, isolate x x by subtracting 1 from both sides:

1+x1=41 1 + x - 1 = 4 - 1

This simplifies to:

x=3 x = 3

Answer

3

Exercise #9

Solve for X:

5x=124 5 - x = 12 - 4

Step-by-Step Solution

First, simplify the right side of the equation:
124=8 12 - 4 = 8
Hence, the equation becomes 5x=8 5 - x = 8 .
Subtract 5 from both sides to isolate x x :
5x5=85 5 - x - 5 = 8 - 5
This simplifies to:
x=3 -x=3
Divide by -1 to solve for x x :
x=3 x=-3
Therefore, the solution is x=3 x=-3 .

Answer

-3

Exercise #10

Solve for X:

5+x3=2+1 5 + x - 3 = 2 + 1

Step-by-Step Solution

To solve 5+x3=2+1 5 + x - 3 = 2 + 1 , we first simplify both sides:

Left side:
53+x=2+x 5 - 3 + x = 2 + x

Right side:
2+1=3 2 + 1 = 3

Now the equation is 2+x=3 2 + x = 3 .

Subtract 2 from both sides:
x=32 x = 3 - 2

So, x=1 x = 1 .

Answer

1

Exercise #11

Solve for X:

6x=102 6 - x = 10 - 2

Step-by-Step Solution

To solve the equation 6x=102 6 - x = 10 - 2 , follow these steps:

  1. First, simplify both sides of the equation:

  2. On the right side, calculate 102=8 10 - 2 = 8 .

  3. The equation simplifies to 6x=8 6 - x = 8 .

  4. To isolate x, subtract 6 from both sides:

  5. 6x6=86 6 - x - 6 = 8 - 6

  6. This simplifies to x=2 -x = 2 .

  7. Multiply both sides by -1 to solve for x:

  8. x=2×1=2 x = -2 \times -1 = 2 .

  9. Since the problem requires only manipulation by transferring terms, the initial approach to the equation setup should lead to x = 4 as the solution before re-evaluation.

Therefore, the correct solution to the equation is x=2 x=2 .

Answer

2

Exercise #12

Solve for X:

7x=155 7 - x = 15 - 5

Step-by-Step Solution

First, simplify the right side of the equation:
155=10 15 - 5 = 10
Hence, the equation becomes 7x=10 7 - x = 10 .
Subtract 7 from both sides to isolate x x :
7x7=107 7 - x - 7 = 10 - 7
This simplifies to:
x=3 -x=3
Divide by -1 to solve forx x :
x=3 x=-3
Therefore, the solution is x=3 x=-3 .

Answer

-3

Exercise #13

Solve for X:

8x=113 8 - x = 11 - 3

Step-by-Step Solution

First, simplify the right side of the equation:
113=8 11 - 3 = 8
Hence, the equation becomes 8x=8 8 - x = 8 .
Subtract 8 from both sides to isolate x x :
8x8=88 8 - x - 8 = 8 - 8
This simplifies to:
x=0 -x=0
Divide by -1 to solve for x x :
x=0 x = 0
Therefore, the solution is x=0 x = 0 .

Answer

0

Exercise #14

Solve for X:

9x=167 9 - x = 16 - 7

Step-by-Step Solution

First, simplify the right side of the equation:
167=9 16 - 7 = 9
Hence, the equation becomes 9x=9 9 - x = 9 .
Since both sides are equal, x x must be 0 0 .
Therefore, the solution is x=0 x = 0 .

Answer

0

Exercise #15

Solve for X:

x3+5=82 x - 3 + 5 = 8 - 2

Step-by-Step Solution

First, simplify both sides of the equation:

Left side: x3+5=x+2 x - 3 + 5 = x + 2

Right side: 82=6 8 - 2 = 6

Now the equation is: x+2=6 x + 2 = 6

Subtract 2 from both sides to isolate x x :

x+22=62 x + 2 - 2 = 6 - 2

Simplifying gives:

x=4 x = 4

Answer

4

Exercise #16

Solve for X:

x+42=6+1 x + 4 - 2 = 6 + 1

Step-by-Step Solution

First, simplify both sides of the equation:

Left side: x+42=x+2 x + 4 - 2 = x + 2

Right side: 6+1=7 6 + 1 = 7

Now the equation is: x+2=7 x + 2 = 7

Subtract 2 from both sides to isolatex x :

x+22=72 x + 2 - 2 = 7 - 2

Simplifying gives:

x=5 x = 5

Answer

5

Exercise #17

Solve for X:

2x+4=3x5 2x + 4 = 3x - 5

Step-by-Step Solution

To solve for x x , first, we need to get all terms involving x x on one side of the equation and constant terms on the other. Start with the original equation:

2x+4=3x5 2x + 4 = 3x - 5

Subtract 2x 2x from both sides to isolate the term involving x x on one side:

4=x5 4 = x - 5

Next, add 5 to both sides to isolate x x :

9=x 9 = x

Thus, the value of x x is 9 9 .

Answer

9 9

Exercise #18

Solve for X:

3x+5=2x+20 3x+5=2x+20

Step-by-Step Solution

To solve the equation 3x+5=2x+20 3x + 5 = 2x + 20 , we need to find the value of x x that satisfies this equation. Here are the detailed steps:

  • Step 1: Eliminate the variable from one side.
    We want to get all terms involving x x on one side and constant terms on the other side. First, subtract 2x 2x from both sides of the equation to eliminate x x from the right side.

    3x+52x=2x+202x 3x + 5 - 2x = 2x + 20 - 2x

    This simplifies to:

    x+5=20 x + 5 = 20

  • Step 2: Simplify the equation.
    Now, we need to isolate x x by removing the constant term from the left side. Subtract 5 from both sides:

    x+55=205 x + 5 - 5 = 20 - 5

    This simplifies to:

    x=15 x = 15

  • Step 3: Verify the solution.
    Substitute x=15 x = 15 back into the original equation to check if it holds true:

    3(15)+5=2(15)+20 3(15) + 5 = 2(15) + 20

    This results in:

    45+5=30+20 45 + 5 = 30 + 20

    50=50 50 = 50

    Since both sides of the equation are equal,x=15 x = 15 is indeed the correct solution.

Therefore, the solution to the equation 3x+5=2x+20 3x + 5 = 2x + 20 is x=15 x = 15 .

Answer

15 15

Exercise #19

Solve for X:

4x+4=5x+2 4x+4=5x+2

Step-by-Step Solution

We start with the equation:
4x+4=5x+2 4x + 4 = 5x + 2

Our goal is to solve for x x . To do this, we aim to collect all terms containing x x on one side of the equation and constant terms on the other side. First, subtract 4x 4x from both sides of the equation to eliminate the x x term on the left side:

4x+44x=5x+24x 4x + 4 - 4x = 5x + 2 - 4x

This simplifies the equation to:

4=x+2 4 = x + 2

Next, subtract 2 2 from both sides to isolate the variable x x on the right side:

42=x+22 4 - 2 = x + 2 - 2

This gives us:

2=x 2 = x

Thus, the solution to the equation is x=2 x = 2 .

Answer

2 2

Exercise #20

Solve for X:

5x+2=4x+10 5x+2=4x+10

Step-by-Step Solution

To solve the equation 5x+2=4x+10 5x + 2 = 4x + 10 , we can simplify and solve for x x by following these steps:

  • First, let's get all terms involving x x on one side and the constant terms on the other. We do this by subtracting 4x 4x from both sides:

    5x+24x=4x+104x 5x + 2 - 4x = 4x + 10 - 4x

    This simplifies to:

    x+2=10 x + 2 = 10

  • Next, we need to isolate x x by subtracting 2 from both sides:

    x+22=102 x + 2 - 2 = 10 - 2

    Which simplifies to:

    x=8 x = 8

Thus, the solution for x x is 8 8 .

Answer

8 8