Simplify: 10^(-3) × 10^4 - (7×9×5)^3 + (4^2)^5 Expression Challenge

Question

Simplify the following expression:

103104(795)3+(42)5= 10^{-3}\cdot10^4-(7\cdot9\cdot5)^3+(4^2)^5=

Video Solution

Solution Steps

00:00 Simplify the expression
00:03 When multiplying powers with equal bases
00:08 The power of the result equals the sum of the powers
00:11 We'll use this formula in our exercise
00:19 Let's calculate the product
00:23 When there's a power of a power, the combined power is the product of the powers
00:29 We'll use this formula in our exercise
00:36 Let's calculate the powers
00:39 Let's calculate the product
00:47 And this is the solution to the question

Step-by-Step Solution

In solving the problem, we use two laws of exponents, which we will mention:

a. The law of exponents for multiplying powers with the same bases:

aman=am+n a^m\cdot a^n=a^{m+n} b. The law of exponents for a power of a power:

(am)n=amn (a^m)^n=a^{m\cdot n} We will apply these two laws of exponents in solving the problem in two steps:

Let's start by applying the law of exponents mentioned in a' to the first expression on the left side of the problem:

103104=103+4=101=10 10^{-3}\cdot10^4=10^{-3+4}=10^1=10 When in the first step we applied the law of exponents mentioned in a' and in the following steps we simplified the expression that was obtained,

We continue to the next step and apply the law of exponents mentioned in b' and handle the third expression on the left side of the problem:

(42)5=425=410 (4^2)^5=4^{2\cdot5}=4^{10} When in the first step we applied the law of exponents mentioned in b' and in the following steps we simplified the expression that was obtained,

We combine the two steps detailed above to the complete problem solution:

103104(795)3+(42)5=10(795)3+410 10^{-3}\cdot10^4-(7\cdot9\cdot5)^3+(4^2)^5= 10-(7\cdot9\cdot5)^3+4^{10} In the next step we calculate the result of multiplying the numbers inside the parentheses in the second expression on the left:

10(795)3+410=103153+410 10-(7\cdot9\cdot5)^3+4^{10}= 10-315^3+4^{10} Therefore, the correct answer is answer b'.

Answer

1013153+410 10^1-315^3+4^{10}