What is an exponent?

Powers are the number that is multiplied by itself several times.
Each power consists of two main parts: 

  • Base of the power: The number that fulfills the requirement of duplication. The principal number is written in large size.
  • Exponent: the number that determines how many times the power base needs to be multiplied by itself.
    The exponent is written in small size and appears on the right side above the power base.
A - How we will identify the exponent

Practice Exponents Rules

Examples with solutions for Exponents Rules

Exercise #1

(23)6= (2^3)^6 =

Step-by-Step Solution

To solve the given expression (23)6 (2^3)^6 , we apply the power of a power rule (am)n=amn (a^m)^n = a^{m \cdot n} . Here, a=2 a = 2 , m=3 m = 3 , and n=6 n = 6 .

Thus, we calculate the exponent:

36=18 3 \cdot 6 = 18

So, (23)6=218 (2^3)^6 = 2^{18} .

Answer

218 2^{18}

Exercise #2

(43)2= (4^3)^2=

Step-by-Step Solution

To solve (43)2 (4^3)^2 , we use the power of a power rule which states that (am)n=amn (a^m)^n = a^{m \cdot n} .

Here, a=4 a = 4 , m=3 m = 3 , and n=2 n = 2 .

So, we calculate 432 4^{3 \cdot 2} ,

which simplifies to 46 4^6 .

Answer

46 4^6

Exercise #3

3532= \frac{3^5}{3^2}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 3532=352 \frac{3^5}{3^2} = 3^{5-2}

Simplifying, we get 33 3^3

Answer

33 3^3

Exercise #4

5654= \frac{5^6}{5^4}=

Video Solution

Step-by-Step Solution

Using the quotient rule for exponents: aman=amn \frac{a^m}{a^n} = a^{m-n} .

Here, we have 5654=564 \frac{5^6}{5^4} = 5^{6-4} . Simplifying, we get 52 5^2 .

Answer

52 5^2

Exercise #5

(3×4×5)4= (3\times4\times5)^4=

Video Solution

Step-by-Step Solution

We use the power law for multiplication within parentheses:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

We apply it to the problem:

(345)4=344454 (3\cdot4\cdot5)^4=3^4\cdot4^4\cdot5^4

Therefore, the correct answer is option b.

Note:

From the formula of the power property mentioned above, we understand that it refers not only to two terms of the multiplication within parentheses, but also for multiple terms within parentheses.

Answer

34×44×54 3^4\times4^4\times5^4

Exercise #6

(42)3+(g3)4= (4^2)^3+(g^3)^4=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(42)3+(g3)4=42×3+g3×4=46+g12 (4^2)^3+(g^3)^4=4^{2\times3}+g^{3\times4}=4^6+g^{12}

Answer

46+g12 4^6+g^{12}

Exercise #7

50= 5^0=

Video Solution

Step-by-Step Solution

We use the power property:

X0=1 X^0=1 We apply it to the problem:

50=1 5^0=1 Therefore, the correct answer is C.

Answer

1 1

Exercise #8

41=? 4^{-1}=\text{?}

Video Solution

Step-by-Step Solution

We begin by using the power rule of negative exponents.

an=1an a^{-n}=\frac{1}{a^n} We then apply it to the problem:

41=141=14 4^{-1}=\frac{1}{4^1}=\frac{1}{4} We can therefore deduce that the correct answer is option B.

Answer

14 \frac{1}{4}

Exercise #9

724=? 7^{-24}=\text{?}

Video Solution

Step-by-Step Solution

Using the rules of negative exponents: how to raise a number to a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the problem:

724=1724 7^{-24}=\frac{1}{7^{24}} Therefore, the correct answer is option D.

Answer

1724 \frac{1}{7^{24}}

Exercise #10

183=? \frac{1}{8^3}=\text{?}

Video Solution

Step-by-Step Solution

We use the negative exponent rule.

bn=1bn b^{-n}=\frac{1}{b^n}

We apply it to the problem in the opposite sense.:

183=83 \frac{1}{8^3}=8^{-3}

Therefore, the correct answer is option A.

Answer

83 8^{-3}

Exercise #11

129=? \frac{1}{2^9}=\text{?}

Video Solution

Step-by-Step Solution

We use the power property for a negative exponent:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the given expression:

129=29 \frac{1}{2^9}=2^{-9}

Therefore, the correct answer is option A.

Answer

29 2^{-9}

Exercise #12

(22)3+(33)4+(92)6= (2^2)^3+(3^3)^4+(9^2)^6=

Video Solution

Step-by-Step Solution

We use the formula:

(am)n=am×n (a^m)^n=a^{m\times n}

(22)3+(33)4+(92)6=22×3+33×4+92×6=26+312+912 (2^2)^3+(3^3)^4+(9^2)^6=2^{2\times3}+3^{3\times4}+9^{2\times6}=2^6+3^{12}+9^{12}

Answer

26+312+912 2^6+3^{12}+9^{12}

Exercise #13

1123=? \frac{1}{12^3}=\text{?}

Video Solution

Step-by-Step Solution

To begin with, we must remind ourselves of the Negative Exponent rule:

an=1an a^{-n}=\frac{1}{a^n} We apply it to the given expression :

1123=123 \frac{1}{12^3}=12^{-3} Therefore, the correct answer is option A.

Answer

123 12^{-3}

Exercise #14

(2×7×5)3= (2\times7\times5)^3=

Video Solution

Step-by-Step Solution

To solve the problem(2×7×5)3 (2\times7\times5)^3 , we need to apply the Power of a Product rule of exponents. This rule states that when you raise a product to a power, it's the same as raising each factor to that power. In mathematical terms, if you have (abc)n (abc)^n , it is equivalent to an×bn×cn a^n \times b^n \times c^n .

Let's apply this rule step by step:

Our original expression is (2×7×5)3 (2 \times 7 \times 5)^3 .

We identify the factors inside the parentheses as 2 2 , 7 7 , and 5 5 .

According to the Power of a Product rule, we can distribute the exponent3 3 to each factor:

First, raise 2 2 to the power of 3 3 to get 23 2^3 .

Then, raise 7 7 to the power of 3 3 to get 73 7^3 .

Finally, raise 5 5 to the power of 3 3 to get 53 5^3 .

Therefore, the expression (2×7×5)3 (2 \times 7 \times 5)^3 simplifies to 23×73×53 2^3 \times 7^3 \times 5^3 .

Answer

23×73×53 2^3\times7^3\times5^3

Exercise #15

(9×2×5)3= (9\times2\times5)^3=

Video Solution

Step-by-Step Solution

We use the law of exponents for a power that is applied to parentheses in which terms are multiplied:

(xy)n=xnyn (x\cdot y)^n=x^n\cdot y^n

We apply the rule to the problem:

(925)3=932353 (9\cdot2\cdot5)^3=9^3\cdot2^3\cdot5^3

When we apply the power within parentheses to the product of the terms we do so separately and maintain the multiplication,

Therefore, the correct answer is option B.

Answer

93×23×53 9^3\times2^3\times5^3