Solve Linear Equation: 7y + 10y + 5 = 2(y + 3)

Question

7y+10y+5=2(y+3) 7y+10y+5=2(y+3)

y=? y=\text{?}

Video Solution

Solution Steps

00:00 Solve
00:03 Collect terms
00:08 Open parentheses properly, multiply by each term
00:16 We want to isolate the unknown Y
00:20 Arrange the equation so that one side has only the unknown Y
00:40 Isolate the unknown Y
00:47 And this is the solution to the question

Step-by-Step Solution

To solve the equation 7y+10y+5=2(y+3) 7y + 10y + 5 = 2(y + 3) , let's proceed as follows:

  • Step 1: Simplify the left side by combining like terms. The expression 7y+10y 7y + 10y combines to 17y 17y , so we have 17y+5=2(y+3) 17y + 5 = 2(y + 3) .

  • Step 2: Expand the right side. Distribute the 2 across the parenthesis: 2(y+3) 2(y + 3) becomes 2y+6 2y + 6 . The equation now reads 17y+5=2y+6 17y + 5 = 2y + 6 .

  • Step 3: Isolate terms involving y y on one side. Subtract 2y 2y from both sides: 17y2y+5=6 17y - 2y + 5 = 6 , which simplifies to 15y+5=6 15y + 5 = 6 .

  • Step 4: Isolate 15y 15y by subtracting 5 from both sides: 15y=65 15y = 6 - 5 , which simplifies to 15y=1 15y = 1 .

  • Step 5: Solve for y y by dividing both sides by 15: y=115 y = \frac{1}{15} .

Therefore, the solution to the problem is y=115 \mathbf{y = \frac{1}{15}} .

Answer

115 \frac{1}{15}