Solve Complex Fraction Expression: (3/5)÷(9/10) + (7/9)÷(1/3)

Question

35910+7913= \frac{\frac{3}{5}}{\frac{9}{10}}+\frac{\frac{7}{9}}{\frac{1}{3}}=

Video Solution

Step-by-Step Solution

To solve the expression 35910+7913 \frac{\frac{3}{5}}{\frac{9}{10}}+\frac{\frac{7}{9}}{\frac{1}{3}} , we need to apply the division of fractions and simplify the resulting expressions.

First, consider the expression 35910 \frac{\frac{3}{5}}{\frac{9}{10}} :

  • When dividing by a fraction, multiply by its reciprocal. The reciprocal of 910 \frac{9}{10} is 109 \frac{10}{9} .
  • Therefore, 35910=35×109 \frac{\frac{3}{5}}{\frac{9}{10}} = \frac{3}{5} \times \frac{10}{9} .
  • Multiplying the numerators and the denominators, we get 3×105×9=3045 \frac{3 \times 10}{5 \times 9} = \frac{30}{45} .
  • Simplify the fraction by dividing both the numerator and denominator by their greatest common divisor, which is 15: 30÷1545÷15=23 \frac{30 \div 15}{45 \div 15} = \frac{2}{3} .

Next, consider the expression 7913 \frac{\frac{7}{9}}{\frac{1}{3}} :

  • The reciprocal of 13 \frac{1}{3} is 31 \frac{3}{1} .
  • Therefore, 7913=79×31 \frac{\frac{7}{9}}{\frac{1}{3}} = \frac{7}{9} \times \frac{3}{1} .
  • Multiplying the numerators and the denominators, we get 7×39×1=219 \frac{7 \times 3}{9 \times 1} = \frac{21}{9} .
  • Simplify the fraction by dividing both the numerator and denominator by their greatest common divisor, which is 3: 21÷39÷3=73 \frac{21 \div 3}{9 \div 3} = \frac{7}{3} .

Now add the simplified fractions: 23+73 \frac{2}{3} + \frac{7}{3} .

  • The fractions have a common denominator, 3, so we can simply add the numerators: 2+73=93 \frac{2 + 7}{3} = \frac{9}{3} .
  • Simplify 93 \frac{9}{3} by dividing both the numerator and the denominator by 3: 9÷33÷3=3 \frac{9 \div 3}{3 \div 3} = 3 .

Therefore, the final solution to the expression is 3 3 .

Answer

3 3