Solve 3-(5²÷5)²+7²: Order of Operations Challenge

Question

Solve the following question:

3(52:5)2+72= 3-(5^2:5)^2+7^2=

Video Solution

Solution Steps

00:00 Solve
00:06 Calculate the exponent
00:23 Always calculate parentheses first
00:31 Calculate the exponents
00:38 Continue solving according to proper order of operations, from left to right
00:46 And this is the solution to the question

Step-by-Step Solution

To solve the expression 3(52:5)2+72 3-(5^2:5)^2+7^2 , we should follow the order of operations, which is often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)).

Here are the steps to solve the expression:

1. Evaluate the exponents

  • Calculate 525^2 which equals 2525.

  • Calculate 727^2 which equals 4949.


2. Evaluate expressions inside parentheses

  • The expression inside the parentheses is 52:55^2:5 which simplifies to 25:5=525:5 = 5.


3. Evaluate the expression inside the parentheses raised to a power

  • The simplified expression now is (5)2(5)^2, which is 2525.


4. Substitute back into the expression

  • The original expression now becomes: 325+493 - 25 + 49.


5. Perform the addition and subtraction from left to right

  • First, calculate 3253 - 25 which equals 22-22.

  • Then, 22+49-22 + 49 equals 2727.


Therefore, the final result of the expression 3(52:5)2+72 3-(5^2:5)^2+7^2 is 2727.

Answer

27