Simplify E⁶·F⁻⁴·E⁰·F⁷·E: Multiple Exponent Operations

Question

E6F4E0F7E= E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=

Video Solution

Solution Steps

00:00 Simplify the expression
00:02 A number without an exponent is actually to the power of 1
00:05 When multiplying powers with the same base, add the exponents
00:08 A number to the power of 0 is always equal to 1
00:16 And this is the solution to the question

Step-by-Step Solution

We use the power property to multiply terms with identical bases:

aman=am+n a^m\cdot a^n=a^{m+n} It should be noted that this property is only valid for terms with identical bases,

We return to the problem

We notice that in the problem there are two types of terms with different bases. First, for the sake of order, we will use the substitution property of multiplication to rearrange the expression so that the two terms with the same base are grouped together. Then, we will proceed to work:

E6F4E0F7E=E6E0EF4F7 E^6\cdot F^{-4}\cdot E^0\cdot F^7\cdot E=E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7 Next, we apply the power property for each type of term separately,

E6E0EF4F7=E6+0+1F4+7=E7F3 E^6\cdot E^0\cdot E\cdot F^{-4}\cdot F^7=E^{6+0+1}\cdot F^{-4+7}=E^7\cdot F^3

We apply the power property separately - for the terms whose bases areE E and for the terms whose bases areF F and we add the exponents and simplify the terms with the same base.

The correct answer is then option d.

Note:

We use the fact that:

E=E1 E=E^1 .

Answer

E7F3 E^7\cdot F^3