Pythagorean Theorem - Examples, Exercises and Solutions

Understanding Pythagorean Theorem

Complete explanation with examples

The Pythagorean Theorem can be formulated as follows: in a right triangle, the square of the hypotenuse is equal to the sum of the squares of the legs.

In the right triangle shown in the image below, we use the first letters of the alphabet to indicate its sides:

a a and b b are the legs.

cc is the hypotenuse.

Using these, we can express the Pythagorean theorem in an algebraic form as follows:

c2=a2+b2 c²=a²+b²

How to solve the Pythagorean theorem

We can express the Pythagorean Theorem in a geometric form in the following way, showing that the area of the square (c c ) (square of the hypotenuse) is the sum of the areas of the squares (a a ) and (b b ) (squares of the legs).

geometrical form of the Pythagorean Theorem

Detailed explanation

Practice Pythagorean Theorem

Test your knowledge with 40 quizzes

Look at the triangle in the figure.

What is its perimeter?

777333AAABBBCCC

Examples with solutions for Pythagorean Theorem

Step-by-step solutions included
Exercise #1

Look at the triangle in the diagram. How long is side AB?

222333AAABBBCCC

Step-by-Step Solution

To find side AB, we will need to use the Pythagorean theorem.

The Pythagorean theorem allows us to find the third side of a right triangle, if we have the other two sides.

You can read all about the theorem here.

Pythagorean theorem:

A2+B2=C2 A^2+B^2=C^2

That is, one side squared plus the second side squared equals the third side squared.

We replace the existing data:

32+22=AB2 3^2+2^2=AB^2

9+4=AB2 9+4=AB^2

13=AB2 13=AB^2

We find the root:

13=AB \sqrt{13}=AB

Answer:

13 \sqrt{13} cm

Video Solution
Exercise #2

Consider a right-angled triangle, AB = 8 cm and AC = 6 cm.
Calculate the length of side BC.

666888BBBCCCAAA

Step-by-Step Solution

To find the length of the hypotenuse BC in a right-angled triangle where AB and AC are the other two sides, we use the Pythagorean theorem: c2=a2+b2 c^2 = a^2 + b^2 .

Here, a=6 cm a = 6 \text{ cm} and b=8 cm b = 8 \text{ cm} .

Plugging the values into the Pythagorean theorem, we get:

c2=62+82 c^2 = 6^2 + 8^2 .

Calculating further:

c2=36+64 c^2 = 36 + 64

c2=100 c^2 = 100 .

Taking the square root of both sides gives:

c=10 cm c = 10 \text{ cm} .

Answer:

10 cm

Exercise #3

Look at the triangle in the diagram. Calculate the length of side AC.

333444AAABBBCCC

Step-by-Step Solution

To solve the exercise, we have to use the Pythagorean theorem:

A²+B²=C²

 

We replace the data we have:

3²+4²=C²

9+16=C²

25=C²

5=C

Answer:

5 cm

Video Solution
Exercise #4

444333XXX

What is the length of the hypotenuse?

Step-by-Step Solution

We use the Pythagorean theorem

AC2+AB2=BC2 AC^2+AB^2=BC^2

We insert the known data:

32+42=BC2 3^2+4^2=BC^2

9+16=BC2 9+16=BC^2

25=BC2 25=BC^2

We extract the root:

25=BC \sqrt{25}=BC

5=BC 5=BC

Answer:

5

Video Solution
Exercise #5

Look at the following triangle.

555121212XXX

What is the value of X?

Step-by-Step Solution

It is important to remember: the Pythagorean theorem is only valid for right-angled triangles.

This triangle does not have a right angle, and therefore, the missing side cannot be calculated in this way.

Answer:

Cannot be solved

Video Solution

More Pythagorean Theorem Questions

Practice by Question Type

More Resources and Links