Solve: (7² - √36÷6)/(3+3) × (5+2) | Order of Operations Challenge

Question

Check the correct answer:

7236:63+3(5+2)= \frac{7^2-\sqrt{36}:6}{3+3}\cdot(5+2)=

Video Solution

Solution Steps

00:00 Solve
00:04 Let's break down and calculate the power
00:10 Calculate the square root of 36
00:20 Always calculate parentheses first
00:25 Any number divided by itself always equals 1
00:33 Calculate the quotient
00:38 And this is the solution to the question

Step-by-Step Solution

Before solving the exercise, let's start by simplifying the power and the root:

72=7×7=49 7^2=7\times7=49

36=62=6 \sqrt{36}=\sqrt{6^2}=6

Now, we arrange the exercise accordingly:

496:63+3×(5+2)= \frac{49-6:6}{3+3}\times(5+2)=

According to the rules of the order of operations, parentheses are solved first:

496:63+3×(7)= \frac{49-6:6}{3+3}\times(7)=

Now we focus on the fraction, we start with the division exercise in the numerator, then we add and subtract as appropriate:

4913+3×(7)=486×(7)= \frac{49-1}{3+3}\times(7)=\frac{48}{6}\times(7)=

We solve the exercise from left to right, first the division exercise and finally we multiply:

8×7=56 8\times7=56

Answer

56 56