Order of Operations: Determine the Sign Between Complex Expressions with √100 and 6²

Question

Indicates the corresponding sign:

3+(10032114):30+3 __ 62:6(32)6 -3+(\sqrt{100}-3^2-1^{14}):30+3\text{ }\text{\textcolor{red}{\_\_}}\text{ }6^2:6\cdot(3-2)-6

Video Solution

Solution Steps

00:00 Set the appropriate sign
00:04 Let's start by calculating the left side
00:07 Break down 100 into 10 squared
00:11 Break down and calculate the powers
00:16 1 to any power is always equal to 1
00:28 The square root of any squared number cancels out the square
00:41 Let's continue to solve the expression according to the proper order of operations, parentheses first
00:49 0 divided by any number is always equal to 0
00:55 This is the calculation for the left side, now let's move to the right side
01:06 Break down and calculate the power
01:11 Let's continue to solve the expression according to the proper order of operations, parentheses first
01:20 This is the solution

Step-by-Step Solution

According to the given problem, whether it's an addition or subtraction each of the digits that come up separately,

this is done within the framework of the order of operations, which states that multiplication precedes addition and subtraction, and that the preceding operations are done before division and subtraction, and that the preceding operations are done before all,

A. We start with the digits that are left in the given problem:

3+(10032114):30+3 -3+(\sqrt{100}-3^2-1^{14}):30+3 First, we simplify the digits that are in the denominators on which the division operation takes place, this is done in accordance with the order of operations mentioned, keeping in mind that multiplication precedes subtraction, therefore, we first calculate their numerical values of the numerators in the multiplication (this within the definition of the root as a power, the root of which is a power for everything), subsequently we perform the subtraction operation which is within the denominators and finally we perform the division operation that takes place on the denominators:

3+(10032114):30+3=3+(1091):30+3=3+0:30+3=3+0+3 -3+(\sqrt{100}-3^2-1^{14}):30+3 =\\ -3+(10-9-1):30+3 =\\ -3+0:30+3 =\\ -3+0+3 \\ In the last step we mentioned that dividing the number 0 by any number (different from zero) will yield the result 0, we continue with the simple digits we received in the last step and perform the addition operation:

3+0+3=0 -3+0+3 =\\ 0 We finish the simple digits that are left in the given problem, we summarize the steps of the simplification:

We received that:

3+(10032114):30+3=3+0:30+3=0 -3+(\sqrt{100}-3^2-1^{14}):30+3 =\\ -3+0:30+3 =\\ 0

B. We continue and simplify the digits that are right in the given problem:

62:6(32)6 6^2:6\cdot(3-2)-6 In this part, in the first step we simplify the digits within the framework of the order of operations,

In this digit, multiplication takes place on digits in the denominators, therefore, we first simplify this digit, in the process we calculate the numerical values of the numerator in the multiplication which is the divisor in the first digit from the left in the given digit:

62:6(32)6=36:616 6^2:6\cdot(3-2)-6 =\\ 36:6\cdot1-6 \\ We continue and remember that multiplication and division precede addition and subtraction, keeping in mind that there is no predefined precedence between multiplication and division operations originating from the order of operations mentioned, therefore, we calculate the numerical values of the numerator in the first digit from the left (including the multiplication and division operations) within the execution of one operation after another according to the order from left to right (this is the natural order of operations), subsequently, we complete the calculation within the execution of the subtraction operation:

36:616=616=66=0 36:6\cdot1-6 =\\ 6\cdot1-6 =\\ 6-6 =\\ 0 We finish the simple digits that are right in the given problem, we summarize the steps of the simplification:

We received that:

62:6(32)6=36:616=0 6^2:6\cdot(3-2)-6 =\\ 36:6\cdot1-6 =\\ 0 We return to the original problem, and we present the results of the simplifications reported in A and B:

3+(10032114):30+3 __ 62:6(32)60 __ 0 -3+(\sqrt{100}-3^2-1^{14}):30+3\text{ }\text{\textcolor{red}{\_\_}}\text{ }6^2:6\cdot(3-2)-6 \\ \downarrow\\ 0\text{ }\text{\textcolor{red}{\_\_}}\text{ }0 As a result, we have that:

0 =0 0 \text{ }\textcolor{red}{=}0 Therefore, the correct answer here is answer B.

Answer

= =