Determine the Sign of (1/5)((5+3÷3-8)²÷√4-2): Complex Expression Analysis

Question

Indicates the corresponding sign:

15((5+3:38)2:42) —— 8(32+1)110 \frac{1}{5}\cdot((5+3:3-8)^2:\sqrt{4}-2)\text{ }_{\textcolor{red}{——}\text{\textcolor{red}{ }}}8-(3^2+1)\cdot\frac{1}{10}

Video Solution

Solution Steps

00:00 Set the appropriate sign
00:04 Let's start by calculating the left side
00:10 Any number divided by itself is always equal to 1
00:17 Break down 4 into 2 squared
00:24 Continue to solve the expression according to the proper order of operations, parentheses first
00:30 Square root of any squared number cancels the square
00:43 Break down and calculate the exponent
00:51 Continue to solve the expression according to the proper order of operations, parentheses first
00:55 Any number multiplied by 0 is always equal to 0
00:58 This is the calculation for the left side, now let's move to the right side
01:03 Break down and calculate the exponent
01:12 Continue to solve the expression according to the proper order of operations, parentheses first
01:19 Let's reduce wherever possible
01:22 This is the solution

Step-by-Step Solution

According to the given problem, whether it is discussed in addition or subtraction each of the terms that comes in its turn,

this is done within the framework of the order of operations, which states that multiplication precedes addition and subtraction, and that the preceding operations are performed before all others,

A. We start with the terms that are on the left in the given problem:

15((5+3:38)2:42) \frac{1}{5}\cdot\big((5+3:3-8)^2:\sqrt{4}-2\big) First, we simplify the terms that are in the denominators (the divisors) on which the multiplication operation is performed, this in accordance with the order of operations mentioned, we note that this term will change in terms that are in the denominators (the numerators) on which division is performed, therefore we start with simply the terms that are in these denominators, remembering that division precedes multiplication and subtraction, therefore the beginning will perform the division operation that is in this term and then perform the operations of multiplication and subtraction:

15((5+3:38)2:42)15((5+18)2:42)=15((2)2:42) \frac{1}{5}\cdot\big((5+3:3-8)^2:\sqrt{4}-2\big)\\ \frac{1}{5}\cdot\big((5+1-8)^2:\sqrt{4}-2\big)=\\ \frac{1}{5}\cdot\big((-2)^2:\sqrt{4}-2\big)\\ Since the results of the operations of multiplication and subtraction that are in the numerators the level will come out smoothly on these denominators, we continue and perform the strength on the term that is in these denominators, this within that we remember thatthe raising of any number (positive or negative) in a double strength will give a positive result, in contrast we will consider its numerical value of the other side that in strength he is the divisor that is in the term that within the denominators the divisors that were left (this within that we remember that in defining the root as strength, the root he is strength for everything):

15((2)2:42)=15(4:22) \frac{1}{5}\cdot\big((-2)^2:\sqrt{4}-2\big)=\\ \frac{1}{5}\cdot\big(4:2-2\big)\\ We continue and finish simply the term, we remember that division precedes subtraction and therefore the beginning will calculate the result of the division operation that in the term and then perform the operation of subtraction:

15(22)=150=0 \frac{1}{5}\cdot\big(2-2\big)=\\ \frac{1}{5}\cdot0=\\ 0 In the last stage we performed the doubling that was left (it is the doubling that is performed on the term that in the denominators), this within that we remember thatthe result of doubling any number (different from zero) in zero here zero,

We finished simply the term that is on the left in the given problem, we will summarize the stages of simply:

We received that:

15((5+3:38)2:42)15((2)2:42)15(22)=0 \frac{1}{5}\cdot\big((5+3:3-8)^2:\sqrt{4}-2\big)\\ \frac{1}{5}\cdot\big((-2)^2:\sqrt{4}-2\big)\\ \frac{1}{5}\cdot\big(2-2\big)=\\ 0

B. We continue and simplify the term that is on the right in the given problem:

8(32+1)110 8-(3^2+1)\cdot\frac{1}{10} In this part to do in the first part simplify the term within the framework of the order of operations,

In this term a doubling that is performed on the term that in the denominators, therefore we simplify first this term, this is done in accordance with the order of operations mentioned, therefore we start from considering its numerical value that in strength that in this term and then perform the operation of multiplication:

8(32+1)110=8(9+1)110=810110 8-(3^2+1)\cdot\frac{1}{10} =\\ 8-(9+1)\cdot\frac{1}{10}=\\ 8-10\cdot\frac{1}{10}\\ We continue and simplify the term that was received in the first stage, we remember in this that multiplication and division precede addition and subtraction, therefore the beginning will perform the doubling in the break, this within that we remember that the doubling in the break means the doubling in the amount of the break, then perform the operation of division that of the break, this is done by appointment, in the last stage will perform the operation of subtraction that remained:

810110=810110=81̸01̸0=81=7 8-10\cdot\frac{1}{10}=\\ 8-\frac{10\cdot1}{10}=\\ 8-\frac{\not{10}}{\not{10}}=\\ 8-1=\\ 7 We finished simply the term that is on the right in the given problem, we will summarize the stages of simply:

We received that:

8(32+1)110=8101107 8-(3^2+1)\cdot\frac{1}{10} =\\ 8-10\cdot\frac{1}{10}\\ 7 We return now to the original problem, and we will present the results of simply the terms that were reported in A and in B:

15((5+3:38)2:42) —— 8(32+1)1100 __ 7 \frac{1}{5}\cdot\big((5+3:3-8)^2:\sqrt{4}-2\big)\text{ }_{\textcolor{red}{——}\text{\textcolor{red}{ }}}8-(3^2+1)\cdot\frac{1}{10} \\ \downarrow\\ 0\text{ }\text{\textcolor{red}{\_\_}}\text{ }7 Therefore the correct answer here is answer A.

Answer

\ne