Examples with solutions for All Operations in the Order of Operations: Using powers

Exercise #1

21:49+28(2+2×3)= \frac{21:\sqrt{49}+2}{8-(2+2\times3)}=

Video Solution

Step-by-Step Solution

In the numerator we solve the square root exercise:

49=7 \sqrt{49}=7

In the denominator we solve the exercise within parentheses:

(2+2×3)= (2+2\times3)=

2+6=8 2+6=8

The exercise we now have is:

21:7+288= \frac{21:7+2}{8-8}=

We solve the exercise in the numerator of fractions from left to right:

21:7=3 21:7=3

3+2=5 3+2=5

We obtain the exercise:

588=50 \frac{5}{8-8}=\frac{5}{0}

Since it is impossible for the denominator of the fraction to be 0, it is impossible to solve the exercise.

Answer

Cannot be solved

Exercise #2

9m3m2×3m6= \frac{9m}{3m^2}\times\frac{3m}{6}=

Video Solution

Step-by-Step Solution

According to the laws of multiplication, we must first simplify everything into one exercise:

9m×3m3m2×6= \frac{9m\times3m}{3m^2\times6}=

We will simplify and get:

9m2m2×6= \frac{9m^2}{m^2\times6}=

We will simplify and get:

96= \frac{9}{6}=

We will factor the expression into a multiplication:

3×33×2= \frac{3\times3}{3\times2}=

We will simplify and get:

32=1.5 \frac{3}{2}=1.5

Answer

0.5m 0.5m

Exercise #3

What is the result of the following power?

(23)3 (\frac{2}{3})^3

Video Solution

Answer

827 \frac{8}{27}

Exercise #4

64:64= 6\sqrt{4}:6\sqrt{4}=

Video Solution

Answer

4 4

Exercise #5

8x24x+3x= \frac{8x^2}{4x}+3x=

Video Solution

Answer

5x 5x