Choose the exercise for the highest result
Choose the exercise for the highest result
Choose the exercise for the highest result
What is the correct sign?
\( 24:6:2 \)_____\( 24:(6:2) \)
Fill in the correct sign:
\( 14+16:4\times2 \)
___
\( 14+16:(4\times2) \)
What is the missing sign?
\( 4+7-3+1-5 \)
___
\( 4+(7-3+1-5) \)
Choose the exercise for the highest result
Let's solve exercise A:
Let's solve exercise B:
Let's solve exercise C:
Let's solve exercise D:
Choose the exercise for the highest result
Let's solve exercise A:
Let's solve exercise B:
Let's solve exercise C:
Let's solve exercise D:
What is the correct sign?
_____
We solve the exercise:
According to the rules, we solve the exercise from left to right:
Now we solve the exercise:
According to the rules, first we solve the exercise inside the parentheses and then we divide:
Therefore:
3 < 8
<
Fill in the correct sign:
___
First, we solve the exerciseAccording to the order of operations, multiplication and division come before addition and subtraction, therefore we first divide 16 by 4 and then multiply the result by 2:
Then, we solve the exercise:
Now, we solve the exercise:
According to the order of operations, the exercise within parentheses is first, so we first multiply 4 by 2 and then proceed to the division operation.
In the last step we add:
Since 22 is greater than 16, the corresponding result is >
>
What is the missing sign?
___
First, we solve the exercise:
According to the rules of the order of operations, we solve the exercise from left to right:
Now we solve the exercise:
According to the rules of the order of operations, we first solve the parentheses and then we will join:
Therefore:
Which has the smallest value?
Who has the highest value?
What is the greatest value?
Choose the exercise for the highest result
Which has the smallest value?
A:
B:
C:
D':
Who has the highest value?
A:
B:
C:
D:
What is the greatest value?
A:
B:
C:
D:
Choose the exercise for the highest result
Let's solve exercise A:
Let's solve exercise B:
Let's solve exercise C:
Let's solve exercise D: