Examples with solutions for Parentheses in advanced Order of Operations: Using parentheses

Exercise #1

Solve the following exercise:

423:(1+3)= 4\cdot2-3:(1+3)=

Video Solution

Step-by-Step Solution

First, we solve the exercise within the parentheses:

423:4= 4\cdot2-3:4=

We place multiplication and division exercises within parentheses:

(42)(3:4)= (4\cdot2)-(3:4)=

We solve the exercises within the parentheses:

834=714 8-\frac{3}{4}=7\frac{1}{4}

Answer

714 7\frac{1}{4}

Exercise #2

Solve the exercise:

3:(4+5)96= 3:(4+5)\cdot9-6=

Video Solution

Step-by-Step Solution

We solve the exercise in parentheses:

3:996= 3:9\cdot9-6=

3996= \frac{3}{9}\cdot9-6=

We simplify and subtract:

36=3 3-6=-3

Answer

-3

Exercise #3

Solve the exercise:

3(41)+5:1= 3\cdot(4-1)+5:1=

Video Solution

Step-by-Step Solution

We solve the exercise in parentheses:33+5:1= 3\cdot3+5:1=

We place in parentheses the multiplication and division exercises:

(33)+(5:1)= (3\cdot3)+(5:1)=

We solve the exercises in parentheses:

9+5=14 9+5=14

Answer

14 14

Exercise #4

Solve the following equation:

400 ⁣:(5)[2(9361)]4= \frac{400\colon(-5)-\lbrack-2(93-61)\rbrack}{4}=

Video Solution

Step-by-Step Solution

We begin by addressing the numerator of the fraction.

First we solve the division exercise and the exercise within the parentheses:

400:(5)=80 400:(-5)=-80

(9361)=32 (93-61)=32

We obtain the following:

80(2×32)4= \frac{-80-(-2\times32)}{4}=

We then solve the parentheses in the numerator of the fraction:

80(64)4= \frac{-80-(-64)}{4}=

Let's remember that a negative times a negative equals a positive:

80+644= \frac{-80+64}{4}=

164=4 \frac{-16}{4}=-4

Answer

4 -4

Exercise #5

2×(3+12×8)= ? 2\times(3+\frac{1}{2}\times8)=\text{ ?}

Video Solution

Step-by-Step Solution

According to the order of operations, parentheses take precedence over everything else.

Therefore, we will first solve the multiplication and then addition within parenthesis.

To make solving the multiplication exercise easier, we will convert 8 into a simple fraction:

2×(3+12×81)=2×(3+82)=2×(3+4) 2\times(3+\frac{1}{2}\times\frac{8}{1})=2\times(3+\frac{8}{2})=2\times(3+4)

Now we will solve the addition exercise inside the parentheses and finally multiply to get our answer:

2×7=14 2\times7=14

Answer

14 14

Exercise #6

Choose the correct answer to the following:

(25216)2+38+5:9= \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=

Video Solution

Step-by-Step Solution

This simple rule is the emphasis on the order of operations which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others,

Let's consider that the numerator is the whole and the denominator is the part which breaks (every break) into whole pieces (in their entirety) among which division operation is performed, meaning- we can relate the numerator and the denominator of the break as whole pieces in closures, thus we can express the given fraction and write it in the following form:

(25216)2+38+5:9=((25216)2+3):(8+5):9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}= \\ \downarrow\\ \big((25-2-16)^2+3\big):(8+5):\sqrt{9} We highlight this by noting that fractions in the numerator of the break and in its denominator are considered separately, as if they are in closures,

Let's return to the original fraction in question, meaning - in the given form, and simplify, separately, the fraction in the numerator of the break which causes it and the fraction in its denominator, this is done in accordance to the order of operations mentioned and in a systematic way,

Let's consider that in the numerator of the break the fraction we get changes into a fraction in closures which indicates strength, therefore we will start simplifying this fraction, given that this fraction includes only addition and subtraction operations, perform the operations in accordance to the natural order of operations, meaning- from left to right, simplifying the fraction in the numerator of the break:

(25216)2+38+5:9=72+313:9 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}\\ We will continue and simplify the fraction we received in the previous step, this of course, in accordance to the natural order of operations (which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others), therefore we will start from calculating the numerical values of the exponents in strength (while we remember that in defining the root as strength, the root itself is strength for everything), and then perform the division operation which is in the numerator of the break:

72+313:9=49+313:3=5213:3 \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{49+3}{13}:3=\\ \frac{52}{13}:3\\ We will continue and simplify the fraction we received in the previous step, starting with performing the division operation of the break, this is done by approximation, and then perform the remaining division operation:

5̸21̸3:3=4:3=43 \frac{\not{52}}{\not{13}}:3=\\ 4:3=\\ \frac{4}{3} In the previous step, given that the outcome of the division operation is different from a whole (greater than whole for the numerator, given that the divisor is greater than the dividend) we marked its outcome as a fraction in approximation (where the numerator is greater than the denominator),

We conclude the steps of simplifying the given fraction, we found that:

(25216)2+38+5:9=72+313:9=5213:3=43 \frac{(25-2-16)^2+3}{8+5}:\sqrt{9}=\\ \frac{7^2+3}{13}:\sqrt{9}=\\ \frac{52}{13}:3=\\ \frac{4}{3} Therefore, the correct answer is answer b'.

Note:

Let's consider that in the group of the previous steps in solving the problem, we can start recording the break and the division operation that affects it even without the break, but with the help of the division operation:

5213:352:13:3 \frac{52}{13}:3\\ \downarrow\\ 52:13:3 And from here on we will start calculating the division operation in the break and only after that we performed the division in number 3, we emphasize that in general we simplify this fraction in accordance to the natural order of operations, meaning we perform the operations one after the other from left to right, and this means that there is no precedence of one division operation in the given fraction over the other except as defined by the natural order of operations, meaning- in calculating from left to right, (Let's consider additionally that defining the order of operations mentioned at the beginning of the solution, which states that exponentiation precedes multiplication and division, which precede addition and subtraction, and that operations within parentheses precede all others, does not define precedence even among multiplication and division, and therefore the judgment between these two operations, in different closures, is in a different order, it is in calculating from left to right).

Answer

43 \frac{4}{3}