Examples with solutions for Parentheses in advanced Order of Operations: Solving an exercise

Exercise #1

8×(5×1)= 8\times(5\times1)=

Video Solution

Step-by-Step Solution

According to the order of operations, we first solve the expression in parentheses:

5×1=5 5\times1=5

Now we multiply:

8×5=40 8\times5=40

Answer

40

Exercise #2

Solve the following question:

(1810)2+33= (18-10)^2+3^3=

Video Solution

Step-by-Step Solution

To solve the expression (1810)2+33 (18-10)^2+3^3 , we need to follow the order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division, Addition and Subtraction).

  • Step 1: Parentheses
    First, solve the expression inside the parentheses: 1810 18-10 .
    1810=8 18-10 = 8

  • Step 2: Exponents
    Next, apply the exponents to the numbers:
    (8)2 (8)^2 and 33 3^3 .
    82=64 8^2 = 64
    33=27 3^3 = 27

  • Step 3: Addition
    Finally, add the results of the exponentiations:
    64+27 64 + 27
    64+27=91 64 + 27 = 91

Thus, the final answer is 91 91 .

Answer

91

Exercise #3

Solve the following question:

3(52:5)2+72= 3-(5^2:5)^2+7^2=

Video Solution

Step-by-Step Solution

To solve the expression 3(52:5)2+72 3-(5^2:5)^2+7^2 , we should follow the order of operations, which is often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)).

Here are the steps to solve the expression:

1. Evaluate the exponents

  • Calculate 525^2 which equals 2525.

  • Calculate 727^2 which equals 4949.


2. Evaluate expressions inside parentheses

  • The expression inside the parentheses is 52:55^2:5 which simplifies to 25:5=525:5 = 5.


3. Evaluate the expression inside the parentheses raised to a power

  • The simplified expression now is (5)2(5)^2, which is 2525.


4. Substitute back into the expression

  • The original expression now becomes: 325+493 - 25 + 49.


5. Perform the addition and subtraction from left to right

  • First, calculate 3253 - 25 which equals 22-22.

  • Then, 22+49-22 + 49 equals 2727.


Therefore, the final result of the expression 3(52:5)2+72 3-(5^2:5)^2+7^2 is 2727.

Answer

27

Exercise #4

Solve the following question:

(42:8):2+32= (4^2:8):2+3^2=

Video Solution

Step-by-Step Solution

Let's walk through the steps to solve the expression (42:8):2+32 (4^2:8):2+3^2 using the correct order of operations, often remembered by the acronym PEMDAS (Parentheses, Exponents, Multiplication and Division (from left to right), Addition and Subtraction (from left to right)).

  • First, resolve the expression inside the parentheses: 42:84^2:8

    • The exponent comes first:

      42=164^2 = 16, so the expression now is 16:816:8.

  • Next, perform the division inside the parentheses: 16:816:8 equals 2. So the expression within the parentheses simplifies to 2.

  • Now, we replace the original expression with this simplified result:

    2:2+322:2+3^2

  • We perform the division: 2:2=12:2 = 1.

  • Substitute back into the expression:

    1+321+3^2

  • Next, calculate the exponent:

    32=93^2 = 9.

  • Finally, add the results:

    1+9=101 + 9 = 10.

Thus, the solution to the expression (42:8):2+32 (4^2:8):2+3^2 is 10.

Answer

10