2log82+log83=
\( 2\log_82+\log_83= \)
\( 3\log_49+8\log_4\frac{1}{3}= \)
\( \frac{1}{2}\log_24\times\log_38+\log_39\times\log_37= \)
\( \frac{1}{4}\cdot\log_61296\cdot\log_6\frac{1}{2}-\log_63= \)
\( 2\log_38= \)
Where:
y
Therefore
We break it down into parts
We substitute into the equation
We break it down into parts
\( 3\log_76= \)
\( \frac{1}{\log_49}= \)
\( \frac{\log_85}{\log_89}= \)
\( \log_{10}3+\log_{10}4= \)
\( \log_24+\log_25= \)
\( \log_29-\log_23= \)
\( \log_49\times\log_{13}7= \)
\( \log_53-\log_52= \)
\( \log_75-\log_72= \)
\( \log_974+\log_9\frac{1}{2}= \)
\( \log_mn\times\log_zr= \)
\( 2\log_34\times\log_29= \)
\( \frac{1}{2}\log_39-\log_31.5= \)
\( \frac{1}{5}\log_81024-2\log_8\frac{1}{2}= \)
\( \frac{1}{\ln8}= \)