log7x+log(x+1)−log7=log2x−logx
?=x
\( \log7x+\log(x+1)-\log7=\log2x-\log x \)
\( ?=x \)
\( \frac{\log_45+\log_42}{3\log_42}= \)
\( \log4x+\log2-\log9=\log_24 \)
?=x
\( \log_9e^3\times(\log_224-\log_28)(\ln8+\ln2) \)
Calculate the value of the following expression:
\( \ln4\times(\log_7x^7-\log_7x^4-\log_7x^3+\log_2y^4-\log_2y^3-\log_2y) \)
Defined domain
x>0
x+1>0
x>-1
We reduce by: and by
Undefined domain x>0
Defined domain
?=x
Calculate the value of the following expression:
\( -3(\frac{\ln4}{\ln5}-\log_57+\frac{1}{\log_65})= \)
\( \frac{1}{\ln4}\cdot\frac{1}{\log_810}= \)
\( \frac{2\log_78}{\log_74}+\frac{1}{\log_43}\times\log_29= \)
\( \frac{\log_311}{\log_34}+\frac{1}{\ln3}\cdot2\log3= \)
\( \frac{\log_76-\log_71.5}{3\log_72}\cdot\frac{1}{\log_{\sqrt{8}}2}= \)
\( \log_64\times\log_9x=(\log_6x^2-\log_6x)(\log_92.5+\log_91.6) \)
Find X
\( \ln8x\times\log_7e^2=2(\log_78+\log_7x^2-\log_7x) \)
Solve for X:
\( \ln x+\ln(x+1)-\ln2=3 \)
\( \frac{\log_47\times\log_{\frac{1}{49}}a}{c\log_4b}= \)
\( \frac{\log_8x^3}{\log_8x^{1.5}}+\frac{1}{\log_{49}x}\times\log_7x^5= \)
For all 0 < x
Find X
For all x>0
Solve for X:
\( \log_23x\times\log_58=\log_5a+\log_52a \)
Given a>0 , express X by a
\( \log_3x^2\log_527-\log_58=\ln e \)
\( \log_x16\times\frac{\ln7-\ln x}{\ln4}-\log_x49= \)
\( (2\log_32+\log_3x)\log_23-\log_2x=3x-7 \)
\( x=\text{?} \)
\( \frac{1}{\log_x3}\times x^2\log_{\frac{1}{x}}27+4x+6=0 \)
\( x=\text{?} \)
Given a>0 , express X by a