3log49+8log413= 3\log_49+8\log_4\frac{1}{3}= 3log49+8log431=
Where:
3log49=log493=log4729 3\log_49=\log_49^3=\log_4729 3log49=log493=log4729
y
8log413=log4(13)8= 8\log_4\frac{1}{3}=\log_4\left(\frac{1}{3}\right)^8= 8log431=log4(31)8=
log4138=log416561 \log_4\frac{1}{3^8}=\log_4\frac{1}{6561} log4381=log465611
Therefore
log4729+log416561 \log_4729+\log_4\frac{1}{6561} log4729+log465611
logax+logay=logaxy \log_ax+\log_ay=\log_axy logax+logay=logaxy
(729⋅16561)=log419 \left(729\cdot\frac{1}{6561}\right)=\log_4\frac{1}{9} (729⋅65611)=log491
log49−1=−log49 \log_49^{-1}=-\log_49 log49−1=−log49
−log49 -\log_49 −log49