Is inequality true?
\log_{\frac{1}{4}}9<\frac{\log_57}{\log_5\frac{1}{4}}
Is inequality true?
\( \log_{\frac{1}{4}}9<\frac{\log_57}{\log_5\frac{1}{4}} \)
\( x=\text{?} \)
\( \ln(x+5)+\ln x≤\ln4+\ln2x \)
\( x=\text{?} \)
\( \log_{\frac{1}{2}}5-\log_{\frac{1}{2}}4\le\log_{\frac{1}{2}}x-\log_{\frac{1}{2}}3 \)
\( \log_23-\log_2(x+3)\le8 \)
\( \log_35x\times\log_{\frac{1}{7}}9\ge\log_{\frac{1}{7}}4 \)
Is inequality true?
\log_{\frac{1}{4}}9<\frac{\log_57}{\log_5\frac{1}{4}}
Yes, since:
\log_{\frac{1}{4}}9<\log_{\frac{1}{4}}7
0 < X \le 3
0 < x\le3.75
0 < x\le\frac{1}{245}
\( \log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2 \)
What is the domain of X so that the following is satisfied:
\( \frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2) \)
\( \log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2 \)
\( x=\text{?} \)
Find the domain X where the inequality exists
\( 2\log_3x<\log_3(x^2+2x-12) \)
\( x=\text{?} \)
\( \log_{13}(2x^2+3)-\log_{13}2\le\log_{13}7-\log_{13}x^2 \)
\log_{\frac{1}{3}}e^2\ln x<3\log_{\frac{1}{3}}2
\sqrt{8} < x
What is the domain of X so that the following is satisfied:
\frac{\log_{\frac{1}{8}}2x}{\log_{\frac{1}{8}}4}<\log_4(5x-2)
\frac{2}{3} < x
\log_{0.25}7+\log_{0.25}\frac{1}{3}<\log_{0.25}x^2
-\sqrt{\frac{7}{3}} < x < 0,0 < x < \sqrt{\frac{7}{3}}
Find the domain X where the inequality exists
2\log_3x<\log_3(x^2+2x-12)
6 < x
Given 0<X , find X
\( \log_4x\times\log_564\ge\log_5(x^3+x^2+x+1) \)
Find the domain of X given the following:
\( \log_{\frac{1}{7}}(x^2+3x)<2\log_{\frac{1}{7}}(3x+1) \)
Given X>1 find the domain X where it is satisfied:
\( \frac{\log_3(x^2+5x+4)}{\log_3x}<\log_x12 \)
Given 0<X , find X
No solution
Find the domain of X given the following:
\log_{\frac{1}{7}}(x^2+3x)<2\log_{\frac{1}{7}}(3x+1)
No solution
Given X>1 find the domain X where it is satisfied:
1 < x < -2.5+\frac{\sqrt{57}}{2}