log7x4−log72x2=3
?=x
\( \log_7x^4-\log_72x^2=3 \)
?=x
Solve for X:
\( \log_3(x+2)\cdot\log_29=4 \)
\( \log_2x+\log_2\frac{x}{2}=5 \)
?=x
\( \log_4x^2\cdot\log_716=2\log_78 \)
?=x
?=a
\( \ln(a+5)+\ln(a+7)=0 \)
?=x
We multiply by:
Extract the root
Solve for X:
?=x
?=x
?=a
Calculate X:
\( 2\log(x+4)=1 \)
Find X
\( \frac{\log_84x+\log_8(x+2)}{\log_83}=3 \)
\( \log_2(x^2+3x+3)\cdot\log_3\frac{1}{4}=-2\log_3(\frac{4x+2}{-2}) \)
?=x
\( 2\log(x+1)=\log(2x^2+8x) \)
\( x=\text{?} \)
\( \frac{1}{2}\log_3(x^4)=\log_3(3x^2+5x+1) \)
\( x=\text{?} \)
Calculate X:
Find X
?=x
\( \frac{2\log_7(x+1)}{\log_7e}=\ln(3x^2+1) \)
\( x=\text{?} \)
\( \frac{\log_4(x^2+8x+1)}{\log_48}=2 \)
\( x=\text{?} \)
\( \ln(4x+3)-\ln(x^2-8)=2 \)
?=x
\( \log_27\cdot\log_48\cdot\log_3x^2=\log_24\cdot\log_47\cdot\log_38 \)
?=x
\( \log3x+\log(x-1)=3 \)
\( ?=x \)
?=x
?=x
\( \log_4x+\log_4(x+2)=2 \)
\( \log7\times\ln x=\ln7\cdot\log(x^2+8x-8) \)
?=x
\( \log_4(3x^2+8x-10)-\log_4(-x^2-x+12.5)=0 \)
?=x
\( x=\text{?} \)
\( \ln(x+5)+\ln x≤\ln4+\ln2x \)
Find the domain X where the inequality exists
\( 2\log_3x<\log_3(x^2+2x-12) \)
?=x
?=x
0 < X \le 3
Find the domain X where the inequality exists
2\log_3x<\log_3(x^2+2x-12)
6 < x