What is the commutative property?

The commutative property is an algebraic principle that allows us to "play" with the position that different elements occupy in multiplication and addition exercises without affecting the final result. Our objective in using the commutative property is to make the resolution of the exercise simpler from the point of view of the calculations.

As we have already said, the commutative property can be applied in the case of addition and multiplication.

A - The commutative property

In other words:

If we change the place of certain elements in the exercise or equation the result will be the same.

Commutative property of addition:

In addition operations we can change the place of the addends and arrive at the same result.
That is:
a+b=b+a a+b=b+a
Same as in algebraic expressions:
X+number=number+X X+number=number+X

Regardless of the order in which we add the terms and no matter how many addends there are, the result will always be the same.


Commutative property of multiplication:

In multiplication operations we can change the place of the terms and arrive at the same result.
That is:
a×b=b×a a\times b=b\times a
Same as in algebraic expressions:
X×number=number×X X\times number=number\times X

Regardless of the order in which we multiply the factors and no matter how many there are in the exercise, the product will always be the same.

Note - The commutative property does not act in this way in subtraction and division operations.


Practice The Commutative property

Examples with solutions for The Commutative property

Exercise #1

Solve the following problem:

15×2×8= 15\times2\times8=

Video Solution

Step-by-Step Solution

Since the exercise involves only multiplication, we will use the commutative property to simplify the calculation:

2×15×8= 2\times15\times8=

Now let's solve the multiplication on the right:

15×8=120 15\times8=120

We obtain the following expression:

2×120=240 2\times120=240

Answer

240 240

Exercise #2

Solve the following exercise:

5+14+5= ? 5+14+5=\text{ ?}

Video Solution

Step-by-Step Solution

Since the exercise only involves addition, we will use the commutative property to calculate more conveniently:

5+5+14= 5+5+14=

We will then solve the exercise from left to right:

5+5=10 5+5=10

10+14=24 10+14=24

Answer

24

Exercise #3

Solve the following exercise:

8+9+2= ? 8+9+2=\text{ ?}

Video Solution

Step-by-Step Solution

Since the exercise only involves addition, we will use the commutative property to solve it.

8+2+9= 8+2+9=

Now let's solve the exercise from left to right:

8+2=10 8+2=10

10+9=19 10+9=19

Answer

19

Exercise #4

555222=? 5\cdot5\cdot5\cdot2\cdot2\cdot2=?

Video Solution

Step-by-Step Solution

We use the substitution property and organize the exercise in the following order:

5×2×5×2×5×2= 5\times2\times5\times2\times5\times2=

We place parentheses in the exercise:

(5×2)×(5×2)×(5×2)= (5\times2)\times(5\times2)\times(5\times2)=

We solve from left to right:

10×10×10= 10\times10\times10=

(10×10)×10= (10\times10)\times10=

100×10=1000 100\times10=1000

Answer

1000

Exercise #5

5+2= -5+2=

Video Solution

Step-by-Step Solution

If we draw a line that starts at negative five and ends at 5

We will go from the point negative five two steps forward (+2) we will arrive at the number negative 3.

Answer

3 -3

Exercise #6

10523= 10-5-2-3=

Video Solution

Step-by-Step Solution

Given that the entire exercise is with subtraction, we solve the exercise from left to right:

105=5 10-5=5

52=3 5-2=3

33=0 3-3=0

Answer

0 0

Exercise #7

42+24= 4-2+2-4=

Video Solution

Step-by-Step Solution

Given that we are referring to addition and subtraction exercises, we solve the exercise from left to right:

42=2 4-2=2

2+2=4 2+2=4

44=0 4-4=0

Answer

0 0

Exercise #8

32+10x= 3-2+10-x=

Video Solution

Step-by-Step Solution

We solve the exercise from left to right:

32=1 3-2=1

1+10=11 1+10=11

Now we obtain:

11x 11-x

Answer

11x 11-x

Exercise #9

11×3+7= 11\times3+7=

Video Solution

Step-by-Step Solution

In this exercise, it is not possible to use the substitution property, therefore we solve it as is from left to right according to the order of arithmetic operations.

That is, we first solve the multiplication exercise and then we add:

11×3=33 11\times3=33

33+7=40 33+7=40

Answer

40 40

Exercise #10

12×13+14= 12\times13+14=

Video Solution

Step-by-Step Solution

According to the order of operations, we start with the multiplication exercise and then with the addition.

12×13=156 12\times13=156

Now we get the exercise:

156+14=170 156+14=170

Answer

170 170

Exercise #11

14×4+2= \frac{1}{4}\times4+2=

Video Solution

Step-by-Step Solution

According to the order of operations, we first solve the multiplication exercise:

We add the 4 in the numerator of the fraction:

1×44+2= \frac{1\times4}{4}+2=

We solve the exercise in the numerator of the fraction and obtain:

44+2=1+2=3 \frac{4}{4}+2=1+2=3

Answer

3 3

Exercise #12

24+61= -2-4+6-1=

Video Solution

Step-by-Step Solution

According to the order of operations, we solve the exercise from left to right:

24=6 -2-4=-6

6+6=0 -6+6=0

01=1 0-1=-1

Answer

1 -1

Exercise #13

4:2+2= 4:2+2=

Video Solution

Step-by-Step Solution

According to the order of operations, we first solve the division exercise:

4:2=2 4:2=2

Now we obtain the exercise:

2+2=4 2+2=4

Answer

4 4

Exercise #14

Solve:

23+1 2-3+1

Video Solution

Step-by-Step Solution

We use the substitution property and add parentheses for the addition operation:

(2+1)3= (2+1)-3=

Now, we solve the exercise according to the order of operations:

2+1=3 2+1=3

33=0 3-3=0

Answer

0

Exercise #15

Solve:

34+2+1 3-4+2+1

Video Solution

Step-by-Step Solution

We will use the substitution property to arrange the exercise a bit more comfortably, we will add parentheses to the addition operation:
(3+2+1)4= (3+2+1)-4=
We first solve the addition, from left to right:
3+2=5 3+2=5

5+1=6 5+1=6
And finally, we subtract:

64=2 6-4=2

Answer

2