Solve ((x^(1/4) × 3² × 6³)^(1/4))^8: Complex Exponent Simplification

Solve the following problem:

((x14×32×63)14)8= ((x^{\frac{1}{4}}\times3^2\times6^3)^{\frac{1}{4}})^8=

❤️ Continue Your Math Journey!

We have hundreds of course questions with personalized recommendations + Account 100% premium

Step-by-step video solution

Watch the teacher solve the problem with clear explanations

Step-by-step written solution

Follow each step carefully to understand the complete solution
1

Understand the problem

Solve the following problem:

((x14×32×63)14)8= ((x^{\frac{1}{4}}\times3^2\times6^3)^{\frac{1}{4}})^8=

2

Step-by-step solution

Proceed to solve this in two stages. In the first stage, we'll use the power rule for powers in parentheses:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n

which states that when a power is applied to terms in parentheses, it applies to each term inside the parentheses when they are opened,

Let's apply this rule to our problem:

((x143263)14)8=((x14)14(32)14(63)14)8 \big((x^{\frac{1}{4}}\cdot3^2\cdot6^3)^{\frac{1}{4}}\big)^8=((x^{\frac{1}{4}})^{\frac{1}{4}}\cdot(3^2)^{\frac{1}{4}}\cdot(6^3)^{\frac{1}{4}})^8

When opening the parentheses, we applied the power to each term separately, however given that each of these terms is raised to a power, we did this carefully and used parentheses,

Next, we'll use the power rule for a power raised to a power:

(bm)n=bmn (b^m)^n=b^{m\cdot n}

Let's apply this rule to the expression that we obtained:

(x141432146314)8=(x116324634)8=x116832486348=x81631646244 (x^{\frac{1}{4}\cdot\frac{1}{4}}\cdot3^{2\cdot\frac{1}{4}}\cdot6^{3\cdot\frac{1}{4}})^8=(x^{\frac{1}{16}}\cdot3^{\frac{2}{4}}\cdot6^{\frac{3}{4}})^8=x^{\frac{1}{16}\cdot8}\cdot3^{\frac{2}{4}\cdot8}\cdot6^{\frac{3}{4}\cdot8}=x^{\frac{8}{16}}\cdot3^{\frac{16}{4}}\cdot6^{\frac{24}{4}}

In the second stage we performed multiplication in the fractions of the power expressions of the terms that we obtained. Remember that multiplication in fractions is actually multiplication in the numerator. In the final stage we simplified the fractions in the power expressions of the multiplication terms that we obtained:

x81631646244=x123466 x^{\frac{8}{16}}\cdot3^{\frac{16}{4}}\cdot6^{\frac{24}{4}}=x^{\frac{1}{2}}\cdot3^4\cdot6^6

Therefore, the correct answer is answer B.

3

Final Answer

x12×34×66 x^{\frac{1}{2}}\times3^4\times6^6

Practice Quiz

Test your knowledge with interactive questions

\( 112^0=\text{?} \)

🌟 Unlock Your Math Potential

Get unlimited access to all 18 Exponents Rules questions, detailed video solutions, and personalized progress tracking.

📹

Unlimited Video Solutions

Step-by-step explanations for every problem

📊

Progress Analytics

Track your mastery across all topics

🚫

Ad-Free Learning

Focus on math without distractions

No credit card required • Cancel anytime

More Questions

Click on any question to see the complete solution with step-by-step explanations