Simplify (y³×x²)⁴: Solving Compound Variable Expressions

Question

(y3×x2)4= (y^3\times x^2)^4=

Video Solution

Solution Steps

00:00 Solve
00:02 When there is a power of a power, the combined exponent is the product of the exponents

Step-by-Step Solution

We will solve the problem in two steps, in the first step we will use the power of a product rule:

(zt)n=zntn (z\cdot t)^n=z^n\cdot t^n The rule states that the power affecting a product within parentheses applies to each of the elements of the product when the parentheses are opened,

We begin by applying the law to the given problem:

(y3x2)4=(y3)4(x2)4 (y^3\cdot x^2)^4=(y^3)^4\cdot(x^2)^4 When we open the parentheses, we apply the power to each of the terms of the product separately, but since each of these terms is already raised to a power, we must be careful to use parentheses.

We then use the power of a power rule.

(bm)n=bmn (b^m)^n=b^{m\cdot n} We apply the rule to the given problem and we should obtain the following result:

(y3)4(x2)4=y34x24=y12x8 (y^3)^4\cdot(x^2)^4=y^{3\cdot4}\cdot x^{2\cdot4}=y^{12}\cdot x^8 When in the second step we perform the multiplication operation on the power exponents of the obtained terms.

Therefore, the correct answer is option d.

Answer

y12x8 y^{12}x^8