Solve: (Square Root of 4 × Square Root of 5) ÷ Square Root of 10 = x

Question

Solve the following equation:

4510=x \frac{\sqrt{4}\cdot\sqrt{5}}{\sqrt{10}}=x

Video Solution

Solution Steps

00:00 Solve
00:03 When multiplying the root of a number (A) by the root of another number (B)
00:06 The result equals the root of their product (A times B)
00:09 We'll use this formula in our exercise and calculate the multiplication
00:21 Root of number (A) divided by root of number (B)
00:24 Is the same as the root of the fraction (A divided by B)
00:27 We'll use this formula in our exercise and convert it to the root of a fraction
00:30 Let's calculate 20 divided by 10
00:33 And this is the solution to the question

Step-by-Step Solution

Introduction:

We will address the following three laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. The law of exponents for an exponent applied to a product in parentheses:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

c. The law of exponents for an exponent applied to a quotient in parentheses:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

Note:

(1). By combining the two laws of exponents mentioned in a (in the first and third steps later) and b (in the second step later), we can obtain a new rule:

abn=(ab)1n=a1nb1n=anbnabn=anbn \sqrt[n]{a\cdot b}=\\ (a\cdot b)^{\frac{1}{n}}=\\ a^{\frac{1}{n}}\cdot b^{\frac{1}{n}}=\\ \sqrt[n]{a}\cdot \sqrt[n]{ b}\\ \downarrow\\ \boxed{\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot \sqrt[n]{ b}}

And specifically for the fourth root we get:

ab=ab \boxed{ \sqrt{a\cdot b}=\sqrt{a}\cdot \sqrt{ b}}

(2). Similarly, note that by combining the two laws of exponents mentioned in a (in the first and third steps later) and c (in the second step later), we can obtain another new rule:

abn=(ab)1n=a1nb1n=anbnabn=anbn \sqrt[n]{\frac{a}{b}}=\\ (\frac{a}{b})^{\frac{1}{n}}=\\ \frac{a^{\frac{1}{n}}}{ b^{\frac{1}{n}}}=\\ \frac{\sqrt[n]{a}}{ \sqrt[n]{ b}}\\ \downarrow\\ \boxed{ \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{ \sqrt[n]{ b}}}

And specifically for the fourth root we get:

ab=ab \boxed{ \sqrt{\frac{a}{ b}}=\frac{\sqrt{a}}{\sqrt{ b}} }

Therefore, in solving the problem, meaning - in simplifying the given expression, we will use the two new rules we received in the introduction:

(1).

ab=ab \boxed{ \sqrt{a\cdot b}=\sqrt{a}\cdot \sqrt{ b}}

(2).

ab=ab \boxed{ \sqrt{\frac{a}{ b}}=\frac{\sqrt{a}}{\sqrt{ b}} }

We will start by simplifying the expression in the numerator using the rule we received in the introduction (1) (but in the opposite direction, meaning we will insert the product of roots as a product of terms under the same root) Then we will perform the multiplication under the root in the numerator:

4510=4510=2010= \frac{\sqrt{4}\cdot\sqrt{5}}{\sqrt{10}}= \\ \frac{\sqrt{4\cdot5}}{\sqrt{10}}= \\ \frac{\sqrt{20}}{\sqrt{10}}= \\ We will continue and simplify the fraction, using the rule we received in the introduction (2) (but in the opposite direction, meaning we will insert the quotient of roots as a quotient of terms under the same root) Then we will reduce the fraction under the root:

2010=2010=2 \frac{\sqrt{20}}{\sqrt{10}}= \\ \sqrt{\frac{20}{10}}=\\ \boxed{\sqrt{2}}

Let's summarize the process of simplifying the expression in the problem:

4510=2010=2 \frac{\sqrt{4}\cdot\sqrt{5}}{\sqrt{10}}= \\ \frac{\sqrt{20}}{\sqrt{10}}= \\ \boxed{\sqrt{2}}

Therefore, the correct answer is answer c.

Answer

2 \sqrt{2}