Solve: Multiplying Square Roots (√70 × √10)/√7 Simplification

Question

Solve the following exercise:

70107= \frac{\sqrt{70}\cdot\sqrt{10}}{\sqrt{7}}=

Video Solution

Solution Steps

00:00 Solve the following problem
00:03 When multiplying the square root of a number (A) by the square root of another number (B)
00:07 The result equals the square root of their product (A times B)
00:10 Apply this formula to our exercise and calculate the products
00:27 The square root of a number (A) divided by square root of a number (B)
00:31 Is the same as the square root of a fraction (A divided by B)
00:34 Apply this formula to our exercise
00:39 Let's calculate 700 divided by 7
00:42 This is the solution

Step-by-Step Solution

Introduction:

We will address the following three laws of exponents:

a. Definition of root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

b. The law of exponents for exponents applied to multiplication of terms in parentheses:

(ab)n=anbn (a\cdot b)^n=a^n\cdot b^n

c. The law of exponents for exponents applied to division of terms in parentheses:

(ab)n=anbn (\frac{a}{b})^n=\frac{a^n}{b^n}

Note:

d. By combining the two laws of exponents mentioned in a' (in the first and third steps ) and b' (in the second step ), we can obtain a new rule:

abn=(ab)1n=a1nb1n=anbnabn=anbn \sqrt[n]{a\cdot b}=\\ (a\cdot b)^{\frac{1}{n}}=\\ a^{\frac{1}{n}}\cdot b^{\frac{1}{n}}=\\ \sqrt[n]{a}\cdot \sqrt[n]{ b}\\ \downarrow\\ \boxed{\sqrt[n]{a\cdot b}=\sqrt[n]{a}\cdot \sqrt[n]{ b}}

Specifically for the fourth root we obtain the following:

ab=ab \boxed{ \sqrt{a\cdot b}=\sqrt{a}\cdot \sqrt{ b}}

e. Note that by combining the two laws of exponents mentioned in a' (in the first and third steps ) and c' (in the second step ), we can obtain another new rule:

abn=(ab)1n=a1nb1n=anbnabn=anbn \sqrt[n]{\frac{a}{b}}=\\ (\frac{a}{b})^{\frac{1}{n}}=\\ \frac{a^{\frac{1}{n}}}{ b^{\frac{1}{n}}}=\\ \frac{\sqrt[n]{a}}{ \sqrt[n]{ b}}\\ \downarrow\\ \boxed{ \sqrt[n]{\frac{a}{b}}=\frac{\sqrt[n]{a}}{ \sqrt[n]{ b}}}

Specifically for the fourth root we obtain the following:

ab=ab \boxed{ \sqrt{\frac{a}{ b}}=\frac{\sqrt{a}}{\sqrt{ b}} }

Therefore, in solving the problem, that is - in simplifying the given expression, we apply the two new rules that we studied in the introduction:

(1).

ab=ab \boxed{ \sqrt{a\cdot b}=\sqrt{a}\cdot \sqrt{ b}} (2).

ab=ab \boxed{ \sqrt{\frac{a}{ b}}=\frac{\sqrt{a}}{\sqrt{ b}} }

We'll start by simplifying the expression in the numerator using the rule that we studied in the introduction (1) (however this time in the opposite direction, meaning we insert the multiplication of roots as a multiplication of terms under the same root) we then proceed to perform the multiplication under the root in the numerator:

70107=70107=7007= \frac{\sqrt{70}\cdot\sqrt{10}}{\sqrt{7}}= \\ \frac{\sqrt{70\cdot10}}{\sqrt{7}}= \\ \frac{\sqrt{700}}{\sqrt{7}}= \\ Continue to simplify the fraction, using the rule that we studied in the introduction (2) ( in the opposite direction, meaning we'll insert the division of roots as a division of terms under the same root) we'll then proceed to reduce the fraction under the root:

7007=7007=100=10 \frac{\sqrt{700}}{\sqrt{7}}= \\ \sqrt{\frac{700}{7}}=\\ \sqrt{100}=\\ \boxed{10}

In the final stage, after reducing the fraction under the root, we used the known fourth root of the number 100.

Let's summarize the process of simplifying the expression in the problem:

70107=7007=100=10 \frac{\sqrt{70}\cdot\sqrt{10}}{\sqrt{7}}= \\ \frac{\sqrt{700}}{\sqrt{7}}= \\ \sqrt{100}=\\ \boxed{10}

Therefore, the correct answer is answer a'.

Answer

10 10