Co-interior Angles: Identifying α1, β1, α2, β2 with Parallel Lines

Question

Which angles in the drawing are co-interior given that a is parallel to b?

α1α1α1β1β1β1α2α2α2β2β2β2aaabbb

Video Solution

Solution Steps

00:00 Determine which of the angles are acute angles
00:03 Corresponding angles occur on the same side and level of the line
00:19 The sum of the acute angles is 180
00:24 The acute angles occur on the same side of the line
00:29 Here is the solution

Step-by-Step Solution

Given that line a is parallel to line b, the anglesα2,β1 \alpha_2,\beta_1 are equal according to the definition of corresponding angles.

Also, the anglesα1,γ1 \alpha_1,\gamma_1 are equal according to the definition of corresponding angles.

Now let's remember the definition of collateral angles:

Collateral angles are actually a pair of angles that can be found on the same side of a line when it crosses a pair of parallel lines.

These angles are on opposite levels with respect to the parallel line they belong to.

The sum of a pair of angles on one side is one hundred eighty degrees.

Therefore, since line a is parallel to line b and according to the previous definition: the angles

γ1​+γ2​=180

are the collateral angles

Answer

γ1,γ2 \gamma1,\gamma2