Students start learning mathematics as early as elementary school, and as they progress, the subject becomes more and more complicated. Among others, the syllabus devotes a part to geometry and requires students to master different shapes and know how to calculate their area and volume. Are you also studying these days how to calculate the volume of a rectangular prism?

Volume of a rectangular prism:

V = length × width × height

A - how to calculate the volume of a rectangular prism

Suggested Topics to Practice in Advance

  1. Parts of a Rectangular Prism

Practice Volume of a Orthohedron

Examples with solutions for Volume of a Orthohedron

Exercise #1

Calculate the volume of the cuboid

If its length is equal to 7 cm:

Its width is equal to 3 cm:

Its height is equal to 5 cm:

333777555

Video Solution

Step-by-Step Solution

The formula to calculate the volume of a cuboid is:

height*length*width

We replace the data in the formula:  

3*5*7

7*5 = 35

35*3 = 105

Answer

105 cm³

Exercise #2

Look at the following orthohedron:

444

The volume of the orthohedron is 80 cm3 80~cm^3 .

The length of the lateral edge is 4 meters.

What is the area of the base of the orthohedron?
(shaded orange in the diagram)

Video Solution

Step-by-Step Solution

The formula for the volume of a box is height*length*width

In the specific question, we are given the volume and the height,

and we are looking for the area of the base,

As you will remember, the area is length * width

If we replace all the data in the formula, we see that:

4 * the area of the base = 80

Therefore, if we divide by 4 we see that

Area of the base = 20

Answer

20 cm²

Exercise #3

Given the cuboid of the figure:

333151515

The area of the base of the cuboid is 15 cm²,

The length of the lateral edge is 3 cm.

what is the volume of the cuboid

Video Solution

Step-by-Step Solution

To calculate the volume of a cuboid, as we mentioned, we need the length, width, and height.

It is important to note that in the exercise we are given the height and the base area of the cuboid.

The base area is actually the area multiplied by the length. That is, it is the data that contains the two pieces of information we are missing.

Therefore, we can calculate the area by height * base area

15*3 = 45

This is the solution!

Answer

45 cm²

Exercise #4

Given the cuboid of the figure:

444XXX2.52.52.5

Given: volume of the cuboid is 45

What is the value of X?

Video Solution

Step-by-Step Solution

Volume formula for a rectangular prism:

Volume = length X width X height

 

Therefore, first we will place the data we are given into the formula:

45 = 2.5*4*X

 

We divide both sides of the equation by 2.5:

18=4*X

And now we divide both sides of the equation by 4:

4.5 = X

Answer

4.5

Exercise #5

If the area of the rectangle DBFH is 20 cm².

Determine the volume of the cuboid ABCDEFGH.

AAABBBDDDCCCEEEGGGFFFHHH48

Video Solution

Step-by-Step Solution

We know the area of DBHF and the length of HF.

We will substitute the given data into the formula in order to find BF. Let's mark the side BF as X:

4×x=20 4\times x=20

We'll divide both sides by 4:

x=5 x=5

Therefore, BF equals 5

Now we can calculate the volume of the box:

8×4×5=32×5=160 8\times4\times5=32\times5=160

Answer

160 160 cm³

Exercise #6

ABCD is a rectagle that has an area of 12 cm².

Calculate the volume of the cuboid ABCDEFGH.

333AAABBBDDDCCCEEEGGGFFFHHH2

Video Solution

Step-by-Step Solution

Based on the given data, we know that:

BD=HF=2 BD=HF=2

We also know the area of ABCD and the length of DB.

We can therefore substitute these values into the formula to find CD, which we will call x x :

2×x=12 2\times x=12

We can then divide both sides by 2:

x=6 x=6

Therefore, CD equals 6.

Finally, we can calculate the volume of the box as follows:

6×2×3=12×3=36 6\times2\times3=12\times3=36

Answer

36 36

Exercise #7

Look at the rectangular prism below.

The area of rectangle CAEG is 15 cm².

The area of rectangle ABFE is 24 cm².

Calculate the volume of the rectangular prism ABCDEFGH.

AAABBBDDDCCCEEEGGGFFFHHH3

Video Solution

Step-by-Step Solution

Since we are given the area of rectangle CAEG and length AE, we can find GE:

Let's denote GE as X and substitute the data in the rectangle area formula:

3×x=15 3\times x=15

Let's divide both sides by 3:

x=5 x=5

Therefore GE equals 5

Since we are given the area of rectangle ABFE and length AE, we can find EF:

Let's denote EF as Y and substitute the data in the rectangle area formula:

3×y=24 3\times y=24

Let's divide both sides by 3:

y=8 y=8

Therefore EF equals 8

Now we can calculate the volume of the box:

3×5×8=15×8=120 3\times5\times8=15\times8=120

Answer

120 120

Exercise #8

If we increase the side of a cube by 6, how many times will the volume of the cube increase?

Video Solution

Step-by-Step Solution

Let's denote the initial cube's edge length as x,

The formula for the volume of a cube with edge length b is:

V=b3 V=b^3

therefore the volume of the initial cube (meaning before increasing its edge) is:

V1=x3 V_1=x^3

Now we'll increase the cube's edge by a factor of 6, meaning the edge length is now: 6x, therefore the volume of the new cube is:

V2=(6x)3=63x3 V_2=(6x)^3=6^3x^3

where in the second step we simplified the expression for the new cube's volume using the power rule for multiplication in parentheses:

(zy)n=znyn (z\cdot y)^n=z^n\cdot y^n

and we applied the power to each term in the parentheses multiplication,

Next we'll answer the question that was asked - "By what factor did the cube's volume increase", meaning - by what factor do we multiply the old cube's volume (before increasing its edge) to get the new cube's volume?

Therefore to answer this question we simply divide the new cube's volume by the old cube's volume:

V2V1=63x3x3=63 \frac{V_2}{V_1}=\frac{6^3x^3}{x^3}=6^3

where in the first step we substituted the expressions for the volumes of the old and new cubes that we got above, and in the second step we reduced the common factor between the numerator and denominator,

Therefore we got that the cube's volume increased by a factor of -63 6^3 when we increased its edge by a factor of 6,

therefore the correct answer is b.

Answer

63 6^3

Exercise #9

A building is 21 meters high, 15 meters long, and 14+30X meters wide.

Express its volume in terms of X.

(14+30X)(14+30X)(14+30X)212121151515

Step-by-Step Solution

We use a formula to calculate the volume: height times width times length.

We rewrite the exercise using the existing data:

21×(14+30x)×15= 21\times(14+30x)\times15=

We use the distributive property to simplify the parentheses.

We multiply 21 by each of the terms in parentheses:

(21×14+21×30x)×15= (21\times14+21\times30x)\times15=

We solve the multiplication exercise in parentheses:

(294+630x)×15= (294+630x)\times15=

We use the distributive property again.

We multiply 15 by each of the terms in parentheses:

294×15+630x×15= 294\times15+630x\times15=

We solve each of the exercises in parentheses to find the volume:

4,410+9,450x 4,410+9,450x

Answer

4410+9450x 4410+9450x

Exercise #10

Calculate the volume of the rectangular prism below using the data provided.

888333222

Video Solution

Answer

48

Exercise #11

Calculate the volume of the rectangular prism below using the data provided. 444555999

Video Solution

Answer

180

Exercise #12

A rectangular prism has a base measuring 5 units by 8 units.

The height of the prism is 12 units.

Calculate its volume.

121212888555

Answer

480

Exercise #13

Below is a cuboid with a length of

8 cm.

Its width is 2 cm and its height is

4 cm.

Calculate the volume of the cube.

222888444

Video Solution

Answer

64 cm³

Exercise #14

A cuboid has a length of is 9 cm.

It is 4 cm wide and 5 cm high.

Calculate the volume of the cube.

555444999

Video Solution

Answer

180 cm³

Exercise #15

The volume of the cuboid is es:

Video Solution

Answer

length X widthX height