Dividing Mixed Numbers and Fractions - Examples, Exercises and Solutions

Understanding Dividing Mixed Numbers and Fractions

Complete explanation with examples

Whole number division by a fraction and a mixed number

Dividing whole numbers by a fraction:

1)    Convert the whole number to a fraction
2)    Convert to a multiplication problem, remembering to swap the numerator and denominator of the second fraction
3)    Solve by multiplying fractions

Whole number division by a mixed number:

1)    Convert the whole number to a fraction
2)    Convert the mixed number to an improper fraction
3)    Convert the division problem to a multiplication problem, remembering to swap the numerator and denominator of the second fraction
4)    Solve by multiplying fractions

Detailed explanation

Practice Dividing Mixed Numbers and Fractions

Test your knowledge with 12 quizzes

\( 3:\frac{3}{4}= \)

Examples with solutions for Dividing Mixed Numbers and Fractions

Step-by-step solutions included
Exercise #1

12:2= \frac{1}{2}:2=

Step-by-Step Solution

To solve 12:2 \frac{1}{2} : 2 , we need to rewrite the division as multiplication by the reciprocal of 2. The reciprocal of 2 is 12 \frac{1}{2} .

Thus, the expression becomes:

12×12=1×12×2\frac{1}{2} \times \frac{1}{2} = \frac{1 \times 1}{2 \times 2}

Calculating the multiplication, we have:

14\frac{1}{4}

Therefore, the solution to the problem is 14 \frac{1}{4} , which corresponds to choice 3.

Answer:

14 \frac{1}{4}

Video Solution
Exercise #2

1:14= 1:\frac{1}{4}=

Step-by-Step Solution

To solve the division problem 1:14 1 : \frac{1}{4} , we will follow these steps:

  • Step 1: Express the division as a fraction operation: 1÷14 1 \div \frac{1}{4} .
  • Step 2: Use the invert-and-multiply rule. Find the reciprocal of 14\frac{1}{4}, which is 44.
  • Step 3: Multiply the whole number by the reciprocal: 1×4=4 1 \times 4 = 4 .

Thus, after performing these operations, we find that the result of the division 1:14 1 : \frac{1}{4} is 4 4 .

Answer:

4 4

Video Solution
Exercise #3

13:3= \frac{1}{3}:3=

Step-by-Step Solution

To solve the problem 13:3 \frac{1}{3} : 3 , we will follow these clear steps:

  • Step 1: Understand that dividing by 3 is equivalent to multiplying by the reciprocal of 3, which is 13\frac{1}{3}.
  • Step 2: Convert the division problem 13:3\frac{1}{3} : 3 into a multiplication problem 13×13\frac{1}{3} \times \frac{1}{3}.
  • Step 3: Perform the multiplication of fractions:

Using the formula ab×cd=acbd\frac{a}{b} \times \frac{c}{d} = \frac{a \cdot c}{b \cdot d}, we have:

13×13=1133=19\frac{1}{3} \times \frac{1}{3} = \frac{1 \cdot 1}{3 \cdot 3} = \frac{1}{9}.

Therefore, the solution to the problem is 19\frac{1}{9}.

Answer:

19 \frac{1}{9}

Video Solution
Exercise #4

12:3= \frac{1}{2}:3=

Step-by-Step Solution

To solve this problem of dividing a fraction by a whole number, we'll follow these steps:

  • Step 1: Change the whole number to a reciprocal fraction.
  • Step 2: Multiply the original fraction by the reciprocal.
  • Step 3: Simplify the resulting fraction, if necessary.

Now, let's apply these steps:
Step 1: The whole number 33 is converted to the reciprocal fraction 13\frac{1}{3}.
Step 2: Multiply the fraction 12\frac{1}{2} by 13\frac{1}{3}:

12×13=1×12×3=16\frac{1}{2} \times \frac{1}{3} = \frac{1 \times 1}{2 \times 3} = \frac{1}{6}

Step 3: The resulting fraction 16\frac{1}{6} is already in its simplest form.

Therefore, when 12\frac{1}{2} is divided by 33, the resulting answer is 16\frac{1}{6}.

Answer:

16 \frac{1}{6}

Video Solution
Exercise #5

3:12= 3:\frac{1}{2}=

Step-by-Step Solution

To solve this problem, we'll follow these steps:

  • Step 1: Identify the reciprocal of the divisor.
  • Step 2: Multiply the dividend by the reciprocal.

Now, let's work through each step:
Step 1: The divisor is 12 \frac{1}{2} . The reciprocal of 12 \frac{1}{2} is 2.

Step 2: Multiply the dividend, which is 3, by the reciprocal of the divisor:
3×2=6 3 \times 2 = 6

Therefore, the solution to the problem is 6 6 .

Answer:

6 6

Video Solution

More Dividing Mixed Numbers and Fractions Questions

Continue Your Math Journey

Topics Learned in Later Sections

Practice by Question Type