Examples with solutions for Root of a Root: Using multiple rules

Exercise #1

Solve the following exercise:

334= \sqrt[4]{\sqrt[3]{3}}=

Video Solution

Step-by-Step Solution

To simplify the given expression, we will use two laws of exponents:

A. Definition of the root as an exponent:

an=a1n \sqrt[n]{a}=a^{\frac{1}{n}}

B. Law of exponents for an exponent on an exponent:

(am)n=amn (a^m)^n=a^{m\cdot n}

Let's begin simplifying the given expression:

334= \sqrt[4]{\sqrt[3]{3}}= \\ We will use the law of exponents shown in A and first convert the roots in the expression to exponents, we will do this in two steps - in the first step we will convert the inner root in the expression and in the next step we will convert the outer root:

334=3134=(313)14= \sqrt[4]{\sqrt[3]{3}}= \\ \sqrt[4]{3^{\frac{1}{3}}}= \\ (3^{\frac{1}{3}})^{\frac{1}{4}}= We continue and use the law of exponents shown in B, then we will multiply the exponents:

(313)14=31314=31134=3112=312 (3^{\frac{1}{3}})^{\frac{1}{4}}= \\ 3^{\frac{1}{3}\cdot\frac{1}{4}}=\\ 3^{\frac{1\cdot1}{3\cdot4}}=\\ \boxed{3^{\frac{1}{12}}}=\\ \boxed{\sqrt[12]{3}} In the final step we return to writing the root, that is - back, using the law of exponents shown in A (in the opposite direction),

Let's summarize the simplification of the given expression:

334=(313)14=3112=312 \sqrt[4]{\sqrt[3]{3}}= \\ (3^{\frac{1}{3}})^{\frac{1}{4}}= \\ \boxed{3^{\frac{1}{12}}}=\\ \boxed{\sqrt[12]{3}} Therefore, note that the correct answer (most) is answer D.

Answer

Answers a + b

Exercise #2

Solve the following exercise:

64364= \sqrt[3]{\sqrt{64}}\cdot\sqrt{64}=

Video Solution

Answer

16

Exercise #3

Solve the following exercise:

3614416= \sqrt{\frac{36}{144}}\cdot\sqrt{\sqrt{16}}=

Video Solution

Answer

1

Exercise #4

Solve the following exercise:

57514= \sqrt[7]{\sqrt{5}}\cdot\sqrt[14]{\sqrt{5}}=

Video Solution

Answer

5114+128 5^{\frac{1}{14}+\frac{1}{28}}

Exercise #5

Solve the following exercise:

16643= \sqrt{\frac{16}{\sqrt[3]{64}}}=

Video Solution

Answer

2

Exercise #6

Solve the following exercise:

1002525= \sqrt{\sqrt{\frac{100}{25}}}\cdot\sqrt{\sqrt{25}}=

Video Solution

Answer

10 \sqrt{10}