Examples with solutions for Solving an Equation by Multiplication/ Division: Binomial

Exercise #1

Solve for X:

5x+10=3x+18 5x + 10 = 3x + 18

Step-by-Step Solution

To solve the equation 5x+10=3x+18 5x + 10 = 3x + 18 , follow these steps:

1. Subtract 3x 3x from both sides to get:

5x3x+10=18 5x - 3x + 10 = 18

2. Simplify the equation:

2x+10=18 2x + 10 = 18

3. Subtract 10 10 from both sides:

2x=8 2x = 8

4. Divide both sides by 2 2 :

x=4 x = 4

Answer

4

Exercise #2

Solve for X:

7x3=4x+9 7x - 3 = 4x + 9

Step-by-Step Solution

To solve the equation 7x3=4x+9 7x - 3 = 4x + 9 , follow these steps:

1. Subtract 4x 4x from both sides to get:

7x4x3=9 7x - 4x - 3 = 9

2. Simplify the equation:

3x3=9 3x - 3 = 9

3. Add 3 3 to both sides:

3x=12 3x = 12

4. Divide both sides by 3 3 :

x=4 x=4

Answer

4

Exercise #3

Solve for X:

4x7=x+5 4x - 7 = x + 5

Step-by-Step Solution

To solve forx x , first, get all terms involving x x on one side and constants on the other. Start from:

4x7=x+5 4x - 7 = x + 5

Subtract x x from both sides to simplify:

3x7=5 3x - 7 = 5

Add 7 to both sides to isolate the terms withx x :

3x=12 3x = 12

Divide each side by 3 to solve forx x :

x=4 x = 4

Thus, x x is 4 4 .

Answer

4 4

Exercise #4

Solve for X:

5x8=10x+22 5x-8=10x+22

Video Solution

Step-by-Step Solution

First, we arrange the two sections so that the right side contains the values with the coefficient x and the left side the numbers without the x

Let's remember to maintain the plus and minus signs accordingly when we move terms between the sections.

First, we move a5x 5x to the right section and then the 22 to the left side. We obtain the following equation:

822=10x5x -8-22=10x-5x

We subtract both sides accordingly and obtain the following equation:

30=5x -30=5x

We divide both sections by 5 and obtain:

6=x -6=x

Answer

6 -6

Exercise #5

Solve for X:

3x+8=7x12 -3x+8=7x-12

Video Solution

Answer

2 2

Exercise #6

Solve for X:

67x=5x+8 6-7x=-5x+8

Video Solution

Answer

1 -1