Examples with solutions for The Number Line with Signed Numbers: Calculate the distance between integers on a number line

Exercise #1

What is the distance between 0 and F?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

Let's begin by marking F and 0 on the number line

We can thus determine that:

F=0 F=0

Therefore, the distance is 0 steps.

Answer

0

Exercise #2

What is the distance between D and I?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

Let's begin by marking the letter D on the number line and then proceeding towards the letter I:

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444555KKK

Note that the distance between the two letters is 5 steps

Answer

5

Exercise #3

What is the distance between J and D?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

Let's begin by marking the letter J on the number line and then proceeding towards the letter D:

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444555KKK

Note that the distance between the two letters is 6 steps

Answer

6

Exercise #4

What is the distance between F and B?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

One might think that as a consequence of the displacement on the axis being towards the negative domain, the result is also negative.

However it is important to keep in mind that here we are referring to the distance.

Distance can never be negative.

Even if the displacement is towards the negative domain, the distance is an existing value.

Answer

4

Exercise #5

What is the distance between A and K?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

One might think that because there are numbers on the axis that go into the negative domain, that the result must also negative.

However it is important to keep in mind that here we are asking about distance.

Distance can never be negative.

Even if we move towards or from the domain of negativity, distance is an existing value (absolute value).

We can think of it as if we were counting the number of steps, and it doesn't matter if we start from five or minus five, both are 5 steps away from zero.

Answer

10

Exercise #6

What is the distance between C and H?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

We first mark the letter C on the number line and then proceed towards the letter H:

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Note that the distance between the two letters is 5 steps.

Answer

5

Exercise #7

What is the distance between D and K?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

We first mark the letter D on the number line and then proceed towards the letter K:

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444555KKK

Note that the distance between the two letters is 7 steps.

Answer

7

Exercise #8

What is the distance between I and E?

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444

Video Solution

Step-by-Step Solution

We first mark the letter I on the number line and then proceed towards the letter E:

AAA-5-5-5BBB-4-4-4CCC-3-3-3DDD-2-2-2EEE-1-1-1FFF000GGG111HHH222III333JJJ444555KKK

Note that the distance between the two letters is 4 steps.

Answer

4