Solve (6×5)^(-8))^(-4): Compound Negative Exponents Problem

Question

Insert the corresponding expression:

((6×5)8)4= \left(\left(6\times5\right)^{-8}\right)^{-4}=

Video Solution

Step-by-Step Solution

To solve this problem, we will follow these steps:

  • Step 1: Apply the power of a power rule.

  • Step 2: Simplify the resulting power.

Let's work through the process:

Step 1: Apply the power of a power rule, which states that (am)n=am×n\left(a^m\right)^n = a^{m \times n}.
We have ((6×5)8)4\left(\left(6\times5\right)^{-8}\right)^{-4}. We can rewrite this using the power of a power rule:

((6×5)8)4=(6×5)8×(4)=(6×5)32 \left(\left(6\times5\right)^{-8}\right)^{-4} = \left(6\times5\right)^{-8 \times (-4)} = \left(6\times5\right)^{32}

Step 2: By calculating the exponent: 8×(4)=32-8 \times (-4) = 32, we find the final simplified expression to be (6×5)32\left(6\times5\right)^{32}.

Therefore, the expression reduces to (6×5)32\left(6\times5\right)^{32}, which matches choice 2.

Answer

(6×5)32 \left(6\times5\right)^{32}