Evaluate ((7×4)^-6)^5: Complex Exponent Expression

Question

Insert the corresponding expression:

((7×4)6)5= \left(\left(7\times4\right)^{-6}\right)^5=

Video Solution

Step-by-Step Solution

To simplify the expression ((7×4)6)5 \left(\left(7\times4\right)^{-6}\right)^5 , follow these steps, checking against the choices provided:

Step 1: Apply the power of a power rule.

  • The expression inside the parentheses 7×47\times4 acts as a single term aa.

  • Therefore, by applying (am)n=am×n(a^m)^n = a^{m \times n}, we simplify:

((7×4)6)5=(7×4)6×5 \left(\left(7\times4\right)^{-6}\right)^5 = \left(7\times4\right)^{-6 \times 5}

Step 2: Multiply the exponents.

  • Calculate 6×5=30-6 \times 5 = -30.

  • Hence, the expression simplifies to (7×4)30\left(7\times4\right)^{-30}.

Conclusion:

The correct simplified form of the expression is (7×4)6×5\left(7\times4\right)^{-6\times5}, aligning with choice 2 and your provided correct answer.

Answer

(7×4)6×5 \left(7\times4\right)^{-6\times5}