Solve ((4×8)^-5)^4: Nested Exponents with Negative Powers

Question

Insert the corresponding expression:

((4×8)5)4= \left(\left(4\times8\right)^{-5}\right)^4=

Video Solution

Step-by-Step Solution

To solve this problem, we need to simplify the expression ((4×8)5)4\left(\left(4 \times 8\right)^{-5}\right)^4.

We'll follow these steps:

  • Step 1: Understand the expression inside the parentheses (4×8)(4 \times 8) and calculate it.

  • Step 2: Apply the power of a power property to simplify the expression.

Step 1: Calculate the expression inside the parentheses.
We have 4×8=324 \times 8 = 32, so the expression becomes (325)4\left(32^{-5}\right)^4.

Step 2: Apply the power of a power property.
This property states that (am)n=amn(a^m)^n = a^{m \cdot n}. Here, m=5m = -5 and n=4n = 4, so:

(325)4=325×4=3220(32^{-5})^4 = 32^{-5 \times 4} = 32^{-20}.

Therefore, the simplified expression is (4×8)20\left(4 \times 8\right)^{-20}.

Hence, the correct answer choice is:

  • Choice 4: (4×8)20 \left(4\times8\right)^{-20}

All other choices result from errors in applying the exponent rules or miscalculating intermediate steps:

  • Choice 1: Misapplies the exponent rules, yielding 9-9 instead of 20-20.

  • Choice 2: Incorrectly calculates the expression, resulting in 1-1.

  • Choice 3: Incorrect fractional exponent interpretation does not apply here.

Answer

(4×8)20 \left(4\times8\right)^{-20}